研究会記事

18-1 最大情報量投影 第21報
（高速連続撮影系の空間周波数特性）
大阪大学医学部附属病院放射線科
内田 勝

18-2 最大情報量投影 第23報
(60Co Radiography系の空間周波数特性)
大阪大学医学部附属病院放射線科
山下 一也

18-3 ルミネッセンスの過度現象の周波数特性とこれを利用した時間分解分光法
大阪大学医学部附属病院放射線科
林田 重雄

18-4a 同時二方向撮影の検討 第一報
（側方散乱の様相）
大阪大学医学部附属病院放射線科
若松 孝司

18-4b 同時二方向撮影の検討 第二報
（側方散乱の解析）
大阪大学医学部附属病院放射線科
林 信 段 床 嘉 聖

18-5 フォトスキャップのMTF
大阪大学放射線研究所
速水 昭 宗

放射線イメージ・インフォーメーション研究会
R.I.I.研究会

役員および賛助会員

会長 高橋信次

顧問 足立忠

立入弘

宮川正

常任委員 内田勝 佐々木常雄 竹中栄一

委員 井上多門 内田勝 梅垣洋一郎

金森仁志 木下幸次郎 佐々木常雄

佐柳和男 高野正雄 竹中栄一

津田元治 士井邦雄 井田峰男

長谷川伸松田一

事務職員 渡辺亜史木村多賀子

賛助会員

キヤノンカメラ株式会社 小西六写真工業株式会社

島津製作所 芝電気株式会社

大日本塗料株式会社 東芝放射線株式会社

株式会社ナック 日立製作所亀戸工場

富士写真フィルム株式会社 富士電機株式会社

（五十音順）
第18回 放射線イメージ・インフォーメーション研究会記事

日時 昭和43年9月28日（土）10.00～16.00（研究会）
16.30～20.00（委員会）

場所 大阪市東成区森町南1丁目
大阪府立成人病センター集検棟6階講堂
TEL 大阪972-1181

出席者（五十音順）
猪熊正克、伊藤博、今川房之助、幾瀬純一、内田勝、遠藤俊夫、金森仁志、木下幸次郎、
佐々木富雄、佐柳和男、高野正雄、竹中栄一、土井邦雄、速水昭宗、林真、松田一、
三浦、森川鶴、矢仲重信、山下一也、山崎武、若松孝司

経過
1. 報告ならびにおいさつ 内田
2. 研究報告
司会 内田
最大情報量撮影 第21報
（高速連続撮影系の空間周波数特性）

大阪大学医療技術短期大学部
内野 勝
大阪大学医学部附属病院放射線科
山下 一也 若松 史司
増田 一考 伊藤 慎也
中西 省三

1. 連続撮影装置は大別して、カセット・チェンジャー方式、フィルム・チェンジャー方式の2つの方式がある。カセット・チェンジャー方式（C. C）は、フィルムに装ってしたカセットがチェーンと歯車機構によって短時間で交換・撮影を繰り返し行うため、カセットの収容量に制限があり、一般には12枚が最高である。また機構的に短時間多数回撮影ができない。フィルム・チェンジャー方式（F. C）は、カット・フィルムまたはロールフィルムを遮光した装置のなかで撮影時だけ増感紙に圧着させ交換させる方式で、短時間での撮影回数も比較的多くできる。

最近、撮影系において空間周波数領域でのポケの拡大が試みられ、レスポンス関数表示によるX線撮影系の定量化が可能となってきている。この報告では連続撮影装置のC. C方式と、カット・フィルムによるF. C方式における連続撮影系全体のポケをフーリエ解析の方法で空間周波数特性を測定し、各方式の画質の客観的な評価を比較した。

なお、本報告は第24回、日本放射線技術学会総会で報告し、日放技法、24巻、2号に「高速連続撮影系の空間周波数特性」と題して山下が発表している。

2. 実験はスリット法で行ない、プログラムの設定は、C. Cでは、\(1^{\text{exp}}/\text{sec} \), \(2^{\text{exp}}/\text{sec} \), \(3^{\text{exp}}/\text{sec} \), \(4^{\text{exp}}/\text{sec} \), \(6^{\text{exp}}/\text{sec} \) で、F. Cでは、\(1^{\text{exp}}/\text{sec} \), \(2^{\text{exp}}/\text{sec} \), \(4^{\text{exp}}/\text{sec} \), \(6^{\text{exp}}/\text{sec} \) で、\(4^{\text{exp}}/\text{sec} \) は1枚目と4枚目、\(6^{\text{exp}}/\text{sec} \) は1枚目、2枚目、6枚目をそれぞれ測定の対象としている。実験の方法は第2図(a)で示す。また、カセット、フィルムの移動方向と鉛スリットの間隔の方向との関係、そして、各分布のとり出し方は、第2図(b)に示す。

3. X線強度分布

第3図はX線強度分布の一例で、これは、各方向、各プログラムごとに得られた線像濃度分布をフィル
4. 結果と考察

第4図は、F. Cの空間周波数特性で、(a)はX軸方向、(b)はY軸方向である。

第5図は、C. Cの空間周波数特性で、(a)はX軸方向、(b)はY軸方向である。

第6図は、F. C、C. C、両方式の比較を示すもので、(a)は、10^x/10^6のもの、(b)は20^x/10^6の1枚目、(c)は20^x/10^6の2枚目の場合のそれぞれの特性的比較である。

連続線図において、写真的性質を良くする第1の条件は、フィルムの移動が線の間には完全に停止していること、連続線図装置自体の動作がないことである。特性の測定結果からみて、実験に用いたF. C. C. Cはこの限りにおいて勝れていることがわかるが、実際には装置自体、フィルム（カセット）の移動とともに動きをもつものであるが、それと曝射時間との組合わせにおいて影響はみられなかったが、人体を盤面上にのせたとき、それの共鳴あるいは時間のずれによる動きは、また別の問題となる。

F. Cでは短時間でのフィルム交換による残像、感度紙の圧着不良等の影響は特性の結果からみてほとんどない。また、C. Cにおける機械的な動揺も無視できると思われる。しかし、全実験の結果からみて、動作時の特性が、わずかであるが、静止時にみるべく劣っていることで、これは、構造上からくる、運動のレスポンス関数、光、圧着不良のレスポンス関数などによるものと考えられる。運動のレスポンス関数は断層撮影系において、すでに解析されているが、高速連続撮影系にも同様適用できる。

循環系においては、短時間曝射が要求されるということはいうまでもない。このことは、血流の変化、追求のためだけではなく、F. C、C. Cの動作（交換）に生じる動揺の時間の幅が、その時の曝射時間内であることの必要性をも意味するものである。

以上、ここでは、連続線図装置の二つの方式の各プログラムのもとで系全体のポケを測定し、空間周波数領域での特性を定量的に表現した。上述した運動、その他のレスポンス関数については、これからの課題にしたい。
Fig. 2. Illustration of the arrangement used for the determination of Line spread-functions.
(a) : Schematic diagram of Film changer system (F.C.) (Left side), and Cassette changer system (C.C.) (right side)
Width of a slit : 0.1mm
Thickness of a slit : 2mm
Distance between focus and film or cassette : 100cm
(b) : Schematic diagram of the arrangement of the slit for measurements.

Fig. 3. X-ray intensity distributions in X-component. (the Film changer system)
Fig. 4. Spatial Frequency characteristic in X-component (a) and X-component (b). (the Film changer system)

Fig. 5. Spatial frequency characteristic in x-component (a) and y-component (b). (the Cassette changer system)
Fig. 6. Comparison of spatial frequency characteristic between the Film changer system and the Cassette changer system, according to the frequency of exposure per second.
最大情報量撮影 第23報

（60Co Radiography系の空間周波数特性）

大阪大学医療技術短期大学部 司田勝
市立病院放射線科 林田重雄
大阪大学医学部附属病院放射線科 山本義憲

60Co Radiographyは治療のための照準および診断に応用され、いままで数多くの報告がある。本研究はこれを積極的に診断面に利用するため、従来線源のsizeによる不可避的な波をコリメーターによって減少し、将来の改良によって十分診断に適する像を得ようとするものである。これらを定量的に解析する手段としてフーリエ解析を適用した。すなわち、空間周波数領域において、この系に存在する波の振動数を解析し、波の各部分のバランスのとれた合理的な撮影像をレスポンス関数の立場から求めようとするものである。ここでは主としてコリメーターのレスポンス関数を中心に解析を行なった。方法は鉛レンガのスリットによるフーリエ変換法である。線源のレスポンス関数を改良するためのスリットコリメーターを作り、これによってどの程度撮影像の空間周波数特性を向上できるか、種々実験を行なった。

装置は60Co同位素治療装置。線源は直径20mm、高さ11mmの直角柱500ci、フィルムは工業用フィルム、増感紙は鉛箔増感紙である。

図1は実験の方法を示すもので、線源・スリット間800mm、スリット・フィルム間800mmにする。コリメーターを挿入したものを、しないものとにおいて実験を行なう。フィルム上に得られた線像濃度分布はフィルム特性曲线によって線像強度分布にもどす。そしてこれらをそれぞれフーリエ変換して空間周波数特性を求めた。図2はスリットの寸法図で鉛レンガによって作る。スリット寸法は巾1.3mm、厚さ100mm、高さ200mmである。図3は試作したコリメーターの寸法図である。実験には入射口5mm正方形、出射口15mm正方形の第1コリメーターを使用した。材質は鉛である。このコリメーターを線源容器の外側に密着して実験を行なった。図4はこのようにして得られた空間周波数特性である。

点線はコリメーターを、実線はコリメーターを付けて実験したときの60Co Radiography系全体の空間周波数特性である。図から明らかように全空間周波数領域において特性はコリメーターを付けた方がよくになっている。横軸の空間周波数はフィルムに得られた線像濃度分布のsizeから計算を行なったものである。図5は図4の二つの空間周波数特性から逆に計算によって、コリメーターの空間周波数特性を計算したものである。図6は図4の二つの空間周波数特性から逆に計算によって、コリメーターの空間周波数特性を計算したものである。図6のように特性は1より大となり、このような特性のものを線像に直列に挿入することによって、この線像の空間周波数特性を向上することが可能となる。また、この方法によってコリメーターの定量的な性能表示が可能です、相互の比較および、改良の基準とすることができる。
きる。
つきに、上70mm、下60mmのギブス煉瓦、中間に厚さ100mmのパラフィンを使ってその中央に直径10mmのピンポン球を挿入して空気層とみなしたフィントームを作り、像改良の効果を調べた（写真略）。この結果、直接撮影および1、2倍拡大撮影におけるコリメーター挿入とコリメーターなしの両者の比較は明らかに挿入時において像の改良がみとめられた（写真略）。
本実験においては、線源容器の外側にコリメーターを装着したために十分な照射野を得ることができなかった。したがって、今後の改良としては、コリメーターを十分線源に密着することによって、診断に十分な照射野と十分に診断に適する放射線像を得ることが残された課題である。

図1

--- 線源

--- 100

--- コリメーター

--- 400

--- スリット

--- 200

--- 800

--- フィルム

図2
ルミネッセンスの過度現象の周波数特性とそれを利用した時間分解分光法

大日本塗料研究部 木村 あき子
土井 邦雄

1. 周波数特性の定義

\[H(f) = \int_0^\infty h(t) \cos 2\pi f t \, dt + \int_0^\infty h(t) \sin 2\pi f t \, dt \]
\[\psi(f) = \arctan \left(\frac{\int_0^\infty h(t) \sin 2\pi f t \, dt}{\int_0^\infty h(t) \cos 2\pi f t \, dt} \right) \]

2. 残光の代表的過程

2.1 1分子型残光

\[h_1(t) = (1/a) \exp(-t/a), \quad t \geq 0 \]
\[H_1(f) = \left[1 + (2\pi af)^2 \right]^{-\frac{1}{2}} \]
\[\psi_1(f) = \arctan 2\pi af \]

2.2 2分子型残光

\[h_2(t) = (1/a) \left(1 + t/a \right)^{-2}, \quad t \geq 0 \]
\[H_2(f) = \left[1 + (2\pi af)^2 \right] \left[\cos 2\pi af \sin 2\pi af - \cos 2\pi af \sin 2\pi af \right]^{-\frac{1}{2}} \]
\[\psi_2(f) = \arctan \left[\frac{\cos 2\pi af \sin 2\pi af + \sin 2\pi af \sin 2\pi af}{2\pi af} \right] \]

3. 周波数特性の差を利用する時間分解分光法

![Fig. 1 C.R励起の場合](image1)

![Fig. 2 U.V励起の場合](image2)

※本研究の内容は、昭和42年秋田科学（金沢）8月3日で報告。
\[h_s(t) = \frac{1}{\tau_0 - \tau_R} \left\{ \exp(-t/\tau_0) - \exp(-t/\tau_R) \right\} \]

\[t \leq \tau_0, \quad \tau_0 < \tau_R \]

\[m = \frac{\tau_R}{\tau_0} \]

\[m = 0.8 \]
\[m = 0.2 \]
\[m = 0.05 \]

\[m = 12.8 \]
\[m = 3.2 \]

\[\| H_b(f) \| = \left[\frac{1 + (2\pi f \tau_0)^2}{1 + (2\pi f \tau_R)^2} \right]^{\frac{1}{2}} \]

\[\phi_f(f) = \arctan \frac{2\pi f (\tau_0 + \tau_R)}{1 - 4\pi^2 f^2 \tau_0 \tau_R} \]

\[m = \frac{\tau_R}{\tau_0} \]

\[m = 12.8 \]
\[m = 3.2 \]
\[m = 0.8 \]
\[m = 0.2 \]
\[m = 0.05 \]
図7 伏火（K部）の電圧

Fig. 7 the voltage at K

Amplitude transfer function

Amplitude response

Frequency [cycles/sec]

Relative amplitude response
時間分解分光測光の解像力に関するストロボ法と
周波数応答法 Frequency Response Method（仮称）との比較

信号出力 \(V_s \) とし、特定数で、時間 \(t \) 頻率 \(f \) の時のこれらの微小変化
がある時の 2つの信号出力の差 \(|\Delta V_s| \) とし、雑音出力を \(V_n \) とすらる。

この信号を検出するには、

\[
\frac{|\Delta V_s|}{V_n} \geq k
\]

でなければならない。 \(k \): 定数
(1)

1. ストロボ法

ホタルの \(t_{opt} \) 初期光電流 \(S \), \(t \) の平均雑音 rms 値 \(N \) とし、理想増幅器で \(g \) の増幅を受けるとする。

1.1 一分子型プロセス

\[
V_s = g \cdot S \cdot e^{-\frac{t}{\tau}}, \quad V_n = g \cdot N
\] \hspace{1cm} (2)

\[
dV_s/dt = g \cdot S \cdot t/\tau \cdot e^{-\frac{t}{\tau}} \hspace{1cm} (3)
\]

\[
|\Delta V_s| = g \cdot S \cdot t/\tau \cdot e^{-\frac{t}{\tau}} \cdot |\Delta T|^{1/\tau} \hspace{1cm} (4)
\]

(2)と(4)を(1)に 入して書きかえると

\[
|\Delta T| \leq \frac{1}{k} \cdot \frac{S}{N} \cdot \frac{t}{\tau} \cdot e^{-\frac{t}{\tau}} \hspace{1cm} (5)
\]

となるが、(5)の右辺は、 \(t/\tau \) に関して、これの 1 において極大を持つ。そこで

\[
\left(\frac{t}{|\Delta T|} \right)_{\max} = \frac{1}{k} \cdot \frac{1}{e} \cdot \left(\frac{S}{N} \right) \text{ホタル}
\] \hspace{1cm} (6)

\[
t_{opt} = \tau
\] \hspace{1cm} (7)

が得られるが、(3)を \(\tau \) のかわりに \(t \) で微分しても同じ結果が得られ、結局最高到達解像力 \(R \) は、次の

gとく決まる。

\[
R_{max} = \left(\frac{t}{|\Delta T|} \right)_{\max} \geq \left(\frac{t}{\Delta a} \right)_{\max} = \frac{0.368 \cdot S}{k \cdot N} \text{ホタル}
\] \hspace{1cm} (8)

1.2 二分子型プロセス

\[
V_s = g \cdot S \cdot \left(1 + t/a \right)^{-2}, \quad V_n = g \cdot N
\] \hspace{1cm} (9)

\[
dV_s / da = 2 \cdot g \cdot S \cdot t/a \cdot \left(1 + t/a \right)^{-3}
\] \hspace{1cm} (10)

\[
|\Delta V_s| = 2 \cdot g \cdot S \cdot t/a \cdot \left(1 + t/a \right)^{-3} \cdot |\Delta a|/a
\] \hspace{1cm} (11)

\[
|\Delta a| \leq 2 \cdot \frac{k \cdot S}{N} \cdot \frac{t}{a} \cdot \left(1 + t/a \right)^{-3} \hspace{1cm} (12)
\]

この (12) の右辺は、 \(t/a \) に関して、これの 1/2 において極大を持つ。そこで

\[
\left(\frac{a}{|\Delta a|} \right)_{\max} = \frac{1}{k} \cdot \frac{8}{27} \cdot \left(\frac{S}{N} \right) \text{ホタル}
\] \hspace{1cm} (13)

\[
t_{opt} = \frac{a}{2}
\] \hspace{1cm} (14)

そこで、- の時の最高到達解像力は、次になる。

-19-
\[R_{1-\nu} = \left(\frac{a}{|\Delta a|} \right)_{\text{max}} = \left(\frac{t}{|\Delta t|} \right)_{\text{max}} = \frac{0.296}{k} \left(\frac{S}{N} \right) \] ホトマル (15)

2. 周波数応答法

ホトマルの平均光電流 \(S \)，平均雑音 \(\gamma \) および光電流 \(N \) とすると。一分子型過程では、\(e^F \) の Fourier 変換の振幅部分は、正規化すると \(\left\{ 1 + (2\pi \tau f)^2 \right\}^{-1/2} \) だから

\[V_s = g S \left\{ 1 + (2\pi \tau f)^2 \right\}^{-1/2}, \quad V_{\nu s} = g N \]

\[\frac{dV_s}{d\tau} = -g S 4 \pi^2 \tau^2 \left\{ 1 + (2\pi \tau f)^2 \right\}^{1/2} \]

\[\therefore \quad \frac{|\Delta V_s|}{\tau} = g S \left(2\pi \tau f\right)^2 \left\{ 1 + (2\pi \tau f)^2 \right\}^{1/2} \]

ここで、前と同様に (16)，(18) を(1)に代入して書きかえると

\[\frac{\tau}{|\Delta \tau|} \leq \frac{1}{k} \cdot \frac{S/N}{\left\{ 1 + (2\pi \tau f)^2 \right\}^{1/2}} \]

となり、この右辺は \(2\pi \tau f \) に関して、これの \(\sqrt{2} \) に極大を持ち、そこで

\[\left(\frac{\tau}{|\Delta \tau|} \right)_{\text{max}} = \frac{1}{k} \cdot \frac{1}{2\sqrt{2}} \cdot \frac{S}{N} \] ホトマル (20)

\[\text{topt} = \frac{\sqrt{2}}{2\pi} \cdot \frac{1}{\tau} \]

が得られる。(16)の左側の式を \(f \) で微分しても同じ結果が得られ、結局次になる。

\[R_{1-\nu} = \left(\frac{\tau}{|\Delta \tau|} \right)_{\text{max}} = \left(\frac{f}{|\Delta f|} \right)_{\text{max}} = \frac{0.385}{k} \left(\frac{S}{N} \right) \] ホトマル (22)

[Appendix 1] 系の帯域幅 \(f_E \)，単位帯域幅あたりの雑音 \(N_E \)、周波数分析器のフィルター帯域幅 \(\Delta f_E \) とすると、(15) では \(N = N_E \cdot f_E \)，(22) では \(N = N_E \cdot \Delta f_E \) となる。

もし、同じ \(N \) を用いるならば、(22) に \(f_E / \Delta f_E \) の係数を乗ずる。

[Appendix 2] \(k = 3 \sim 5 \)，\(S/N \approx 10^2 \)，\(f_E / \Delta f_E \approx 10^3 \) とすると、\(R_{1-\nu} \approx 10 \)。\(R_{2-\nu} \approx 10^4 \)。
質問討論

木下：大変面白方法ですが、少し質問したい。

(1) 周波数応答の測定で、振幅を求めるには、Ca装置のガンマ補正回路が必要で、簡単にはですか？

(2) 時間分解光度光で我々が普通に行なっているのは、くり返しのないった11回の現象が多い。
この様な時、この方法は使えないのではないか？

土井：(1)については、木下さんの言われる通り、振幅の応答を正確に測定するのは大変むずかしいと思う。
そこで私が行なったのは、相対値だけを測定した。その中で、一番良い応答をしたもの（ここでは、CαWO₄だった）を基準にしてタテ軸の値をとりました。
(2)については、この測定法は強度の現象の解析のように、くり返しの許されるものを対象に考えている。だから、従来のストロボ法に対応する測定法です。

金森：一回しかおこらない現象には、この方法は使えないのですか？

土井：使えないです。

金森：ストロボ法では、ホトマルにかける電圧は、サンプリングの役目をしているようだが、どの位の時間幅ですか？

土井：大体μsecの程度です。

これはダブルプルスを発生する装置を用いて行ないますが、相当高価であるのに反して、周波数応答を利用してあるものは非常に安価です。

矢仲：この考え方では、残光と立ち上がりを区別しないで、これを単に過渡現象として一つのものとみなすわけですね？

土井：その通りです。

矢仲：眼の周波数特性は、明るさによって相当変化するから、明るさによっては、例えばハイライトの部分などは強光体の特性もいてくるのではないか？

土井：ここで示したように、Z₉₅（Pₙ₄）₂：MₙやZ₉₅S₂O₃：M₉₅除いては、相当周波数特性が良いようです。だから、たとえ眼の特性が少し高周波側に移動してもほとんど同じ効果ではないかと思います。つまり視覚系へ影響は、フレアの様な長残光が主にきののではないかと思う。

高野：ここで行なった測定のτ/△τはどの位ですか？
またCαWO₄の時定数は何秒ぐらいですか？

土井：実際の測定では、理論的計算より相当悪く、多分τ/△τ≧1程度ではないかと思う。CαWO₄の残光は、きれいつずに指数関数に近似され、時定数は1μsec位です。

高野：結局、強光体の周波数特性を導入したmeritは、眼とつながったことにあると考えてもよろしいですか？
土井：その通りですが、もっと広く考えれば、入力側つまり電気信号の方ともつながったと考えられます。
内田：最近、高速度撮影が増加しています。そこでこのスピードが更にあがってくると、ここで問題にしている発光体の過渡現象の影響がでてくると思われますが、どう考えていますか？
土井：撮影のスピードが上がれば、問題になると思いますが、現在行なわれている程度ではほとんど影響ないと思います。
同時二方向撮影の検討 第一報
（側方散乱の様相）

大阪大学医学部附属病院放射線科
林 眞, 山下一也, 若松孝司

1. 緒 言

同時二方向撮影は、特に血管造影法のように、時間的に変化する血管像を、同時に二方向から撮影し、その同位相像を得ることにより、患者への負担を軽減し、診断を高めようとするものである。最近は、高速連続撮影との併用が日常的に取り入れられてきている。しかし、同時二方向撮影においては、被写体からの側方散乱のため、他方向のフィルムに散乱黒化の影響をおよぼす。これは、他方向のX線像の画質を低下させる要因となる。

側方散乱についても、すでに 2, 3 の報告がみられるが、ここでは、同時二方向撮影の諸条件のもとでの側方散乱の様相、状態をフィルムで測定する。その黒化の様相を、線量分布解析装置により黒化度百分比（％）で表現し、比較検討した。

2. 実験装置および器具

X線発生装置：診断用150kVp三相全波整流12パルス発生装置
X線管：回転陽極型、焦点2×2mm
現像：自動現像機（90秒用）

線量分布解析装置：
Automatic Isodose plotter MRA-201
線量計：ビクトリーン・コンデンサ型Rメーター
フィルム：医療用X線フィルム
増感紙：高感度用
ファントム：アクリルライト（30×40×15cm）
グリッド：格子比5:1, 8:1
アルミ板：厚さ1mm, 3mm
3. 実験方法

Fig. 1 実験方法図

Fig.1 は実験の方法を示す。図のように、アクリルライドの厚さ 15 cm をファントムとして用い、その下にフィルムを装着したカセットを置く。焦点－ファントム間距離を 100 cm として、側方向から x 線を照射した。そのとき発生する側方散乱を、x 線入射方向から順に背後側方散乱部、体側方散乱部、前方側方散乱部の三つに区分する。また、焦点外 x 線がフィルムにおよぼす影響を除くため多重絞りを用いて、線束が直接に他方向のフィルムに接しないような照射野にした。

Fig. 2 (a) (b) (c)

散乱黒化の様相とその黒化度百分比

Fig. 2 (a) (b) (c) は、散乱黒化フィルムを線量分布解析装置によって、10% の黒化の差の割合で打点区分したものです。その方法は、各場合の中で全体的に最高の黒化を示すフィルム（管電圧 120 kV, 照射野 24 × 24 cm の条件で撮影したもの）の体側方散乱部の中央の黒化度を 100 % として、フィルムベース濃度を 0 % とし、その間の黒化度を 10 % ずつに区分する。

Fig. 3 最高濃度−mAs 曲線

Fig. 3 は mAs をかえて得られたフィルム特性曲線で、実験の各電圧ごとにつくと、図より、ほぼ直線とみなすことができた。また、各場合の露出条件は、空中線量を一定にして選んだ。

Fig. 4 (a) (b) (c)

入射点からの黒化度百分比

Fig. 4 (a) は、管電圧を 80 kV, 100 kV, 120 kV に、照射野を 14 × 14 cm, 24 × 24 cm にしたときの入射点からの黒化度百分比（％）である。

Fig. 4 (b) は、管電圧を 100 kV に一定して、照射野を 14 × 14 cm, 24 × 24 cm の各場合に、アルミ板 3 mm, または 3 mm をファントムとフィルム間に挿入したもののが黒化度百分比である。

Fig. 4 (c) は、管電圧を 100 kV, 照射野を 24 × 24 cm に一定して、グリッドをファントムとフィルム間に挿入したものの黒化度百分比である。
4. 結果および考察

1）側方散乱の黒化の様相は、滑らかな楕円状をなし、入射軸に対して左右対称を示す。しかし、照射野が広くなるにつれて矩形状に近くなる。また、グリッドの格子方向によっては、この矩形状は変わる。たとえば、入射方向と格子の方向を平行にすれば、楕円状ではなく丸みをもつ矩形状を示すようになる。

2）側方散乱による黒化度百分比は、各場合とも、管電圧よりも照射野の大小およびグリッドの有無に大きく左右される。

3）アルミ板を挿入しても、その効果にあまり期待できない。電圧が高いためと思う。

4）最高黒化度を示す点は、ファントーム厚の中央部より入射点側にある。管電圧が高くなるとともに、出射点側に移動する傾向がある。このことは、同時二方向撮影をする場合、被写体の部位によっては、入射方向を考えねばならない。

5）側方散乱による黒化の影響は背後散乱部の方が、前方散乱部より影響が大である。

ところで私たちは、日常の撮影においては、管電圧110kVp、管電流正方では200mA、側面では320mA、時間0.02secで同時二方向撮影をしている。そして患者は、厚さ7cmの発泡スチロールにのせ、正面像では8:1と5:1のグリッドをクロスさせた上に厚さ3mmのアルミ板を重ね、側面像では8:1のグリッドで厚さ3mmのアルミ板を重ねて用いている。

以上、本報告は側方散乱の様相のみをフィルムで観察し、その黒化度を比較検討したものである。なお、散乱線の定量化および正規散乱との散乱量比較等は今後の課題として、さらに実験を重ね、次に報告したい。
Fig. 1 実験方法図

-15cm- 100cm-

前方側方散乱部
体側方散乱部
背後側方散乱部

Ae または グリッド
フィルム
Fig. 4 (a)
入射点から黑化度百分比

前方側方散乱部
体側方散乱部
背後側方散乱部

X線
入射方向

120kV
24x24cm

100kV
24x24cm

80kV
24x24cm

120kV
10x14cm

100kV
10x14cm

80kV
10x14cm

Phantom厚 cm
Fig. 4 (b)
1. 緒 言

第1報で明らかになったように、側方散乱線は、大きく背後側方散乱部、体側方散乱部、前方側方散乱部にわけられる。

本報では、実測値の傾向を考察することにより簡易な実験式を求めることを目的とした。

2. 実 験

2.1 実験装置および器具

第1報と同じものを使用した。

2.2 実験方法

第1図は実験の方法を示すものので、X線を直徑3mmのビーム状平行光としてアクリルアントームに射入させアントーム下におかれたフィルムにより第2図に示す各側方散乱部出力を得る。

2図（a）は、15cm厚さのアクリルによる側方散乱線、（b）は7cm厚のアクリルによるものである。

2.3 黒化度の線選化

フィルム法により線選分を求めるには、散乱線の散乱方向による線選変化、フィルムおよび感光紙の線選依存性、X線の吸収の影響等が考慮されなければならないが、照射野およびアントームの厚さ、そして管電圧が一定であるならば体側方散乱部の最高線度の位置が一定であること、側方散乱量は、射入X線強さすなわち、mA値に比例するものを引用するから、最高線度部が上記の影響を平均的に受けていないものと仮定し、最高線度・mA曲線（第3図を射入X線管電圧）10kvr、における黒化度特性曲線に代置した。この最高線度、mA曲線を線選分解析装置に記憶させ、線選分を求める。

4図（a）は、15cm厚のアクリルによる側方散乱の線選分分布であり、4図（b）は、7cm厚のアクリルによるものである。

各図中央の環線を100%として10%間隔で打点されており、最高線度部は中央の環線内にある。

2.4 線選分のグラフ化

線選分の様相の一端を何ぶために、X線射入方向直下（4図では、Y軸にそって最高線度部を
100%としグラフ化したものが第5図である。
実線 (a) は, 15cmアクリルのもの, 破線 (b) は, 7cmアクリルによるものである。
背後側方散乱部, 体側方散乱部, 前方側方散乱部と大きく2つの山に分れ, 各々の移行部に不連続点が存在することがわかる。

3. 実験式

3.1 実験式の定義 (A)
実測値を数式化するに当り, 散乱線源を右手系座標によって図式化したものが第6図である。
今回は, 7cm厚さのアクリルによる散乱線分布についてのみ考える。
図において, 強さ I_0 のビーム状のX線がファントームに入射したとき, ファントーム内にY軸にそって強さ $\xi I_0 e^{-\frac{r}{T_2}}$ のような散乱線源が分布しているものと考え, 散乱線源から距離の逆2乗に比例して散乱エネルギーが伝播するものと仮定して, 点B (XYZ) に伝播する散乱エネルギーの総括 E_B
を

$$E_B = \int_0^\infty \xi I_0 e^{-\frac{r}{T_2}} \, dy$$

(6)の形でもとめてみた。

ここで, ξ は係係数, μ はファントームの線吸収係数でX線波長の関数であるが管電圧110kVpのX線を実効電圧80kVとみてμの値をこれに準じた。Aはファントームの厚さ。

第7図は, (A)式を30等分のシンプソンの公式で数値計算したものである。
実験 (a) がY軸上の実測値である
破線 (a') がその計算値である。
実験 (b) は, $x = 2.5(\text{cm})$ (Y軸より2.5cm右にそれぞれ直線上) における実測値で, 破線 (b') は, その計算値である。

A式による計算値は, 全体としての傾向は実測値と合うようだが, 不連続点をもっていない。

3.2 実験式の定義 (B) 第8図において強さ I_0 のX線がファントームに入射した場合Y軸にそって $\xi I_0 e^{-\frac{r}{T_2}}$ の強さの散乱線源が存在し散乱線源から距離の逆2乗に比例して散乱線エネルギーが伝播するものとすると同時に散乱線エネルギーがファントーム内で吸収され指数関数的に減衰するものとして, 点Bに達する散乱エネルギーの総和 E_B を

$$E_B = \int_0^\infty \xi I_0 e^{-\frac{r}{T_2}} \, dy$$

(6)の形で表わしてみた。ここで, r_1 は散乱線がファントーム内を走る距離。

第9図は, 実測値, (A)式による計算値, (B)式による計算値を比較したものである。

第9図でわかるように(B)式によるものは, 不連続点と3つのピークが表われている。

4. 結 言

散乱線の分布を1つの数式にまとめることは, 困難なことであるが, 散乱線の様相を立体的にとらえて
行く一つの手がかりするために実験を試みた。

①式でY軸上の散乱線分布の全体の傾向をとらえ、⑩式で3つの散乱線部のピーク値を表すようにしたが、背後側方散乱部のピーク部において、実測値と異なるようである。

質疑応答

第1報

質問：同時2台撮影において正面および側面のO、T、Fはだしていなかったか。

答：だしていません。感覚的には、単純撮影に比較して、相当の画質低下をもたらします。

質問：背後散乱部、側面散乱部、前方散乱部の3つにわかれているが、それぞれのピーク部の割合はどうなっているか。

答：側散乱部の最大濃度の位置で100%として、背後散乱、前方散乱部は60%の値を示している。

質問：散乱線を欠くために具体的にどのようにしているか。

答：クロスグリッドを使用しグレーデル法をとり入れ、特に照射野を絞ることに注意している。

第2報

質問：フアントームに四角なものを使っているので不連続部3つの山ができるのではないか。

答：基調に思える。フアントームについては、四角なもののが一番シンプルであると考え使用した。

質問：フアントームが無限の広がりをもっているから山は一つできるのではないか。

答：（承認者より）

フアントームについては、実験である程度照射野を絞っているので、無限の状態に近いものと思われる。

尚実験式の中で距離の逆2乗の法則とeの法則との項が含まれているが、これは、明らかに無理なところがあると思われるが、実験式なのである程度の成功を思わせる。背後側方散乱部の異りは、散乱線のエネルギーの問題が関係しているのではないか。
第6图 效应断层II 北

\[E_B = \int_a^b \frac{F_r}{E \cdot \xi \cdot \eta} \, dh \]
フォトスキャンの MTF

阪大医 放 速水昭宗
阪大医 R1 猪熊正克

MTFの適用は、すでに多くの発表があるが、現在、普通に各施設でおこなわれているフォトスキャンでのものは少ない。

フォトレコーディング方式は、一般にシチグラムの濃度変化範囲を広くとることができ、多くの分布に関する情報を含んでいること、またX線写真と重ね合わせてみることができるようにシチグラムと線図との位置関係が明確に判別できる特長があるといわれている。

岐阜の物理部会、コリメーターからレントゲナーまでの系統のMTFを発表したが、今回は、そのあとの前後も含めたものということになる。それに加えて、いわゆるガウシアンフィルタを光源に附加したときの結果も併せて求めた。

フィルタに関しては、安河内氏らの仕事があるが、要するに“みやすいMという視点になると思われる。これは、われわれの状況モデルで追試でもみやすいという意見が多く、正しいと考えられる。しかし、みてみやすいMと忠実なものというのは別の問題になると思われるが、とりわけ、われわれの予想実験の結果を発表する。なお、これは現在もデータの不備から実験中のものであり、中間報告的なものであることを御了承いただき、御検討いただきたい。

放射源：\[\text{Co}^{60} \quad 10^6 \muCi, \quad 長さ12cm, \quad 内径0.7mm \]のガラス管による線源使用

第一図 ドット状スキャンでのRate Downの効果
第二図 ドット状スキャンでの焦点のずれの効果 10cm焦点ハーリー使用
第三図 ガウシアンフィルタを加えた時のR, Dの効果
第四図 ガウシアンフィルタを加えた時の焦点のずれの効果

現在の所、大体の傾向として次のがいえるようである。

1）R, DをかえるとMTFは向上する
2）ガウシアンフィルタを加えるとMTFは低下する

なお、この実験は出来るだけ普通に行われている方法をとり入れたため、たとえば、コントラスト増
3. あいさつ

次回は12月上旬、関西で開催の予定です。
9月7日（土）午前10時から午後5時まで、高橋信次先生を班長とする標記の文部省総合研究の第1回会合が、名古屋市の近くフィルム4階会議場で開催された。

班員は、星野（東北大）、篠崎（弘前）、立入（阪大）、入江（九大）、石丸（岐阜大）、西島（名大）、岡崎（岐阜大）の各教授からなり、他の協力者としては、島津、東芝、日立の装置メーカーおよびさくら、富士のフィルムメーカー等、更にRII研究会のメンバーもおりなっている。

RII研究会からは、内田、佐柳、竹中、土井の4名が出席した。

はじめに高橋先生から、元来、単純直接撮影では撮れなかった微細な被写体を対象とするX線検査に関する研究を行なう旨説明があり、続いて、50μの焦点のX線管の現状、この管球のレスポンス関数、拡大撮影による臨床結果等に関する報告が次々になされた。

書記 土井 邦雄
研究会第3回委員会議事録

日時　昭和43年9月28日（土）　午後4時～8時
場所　大阪府立成人病センター
出席者　内田　勝　金森仁志　木下幸次郎　佐藤和男　高野正雄　高橋信次　竹中栄一　土井邦雄
　　　　松原　一　矢仲直信　幾瀬純一（五十音順）

1. 研究白書
　第2回委員会に提出された原案の修正案が再提出された。
　これは前回の討論をもとに、佐藤和男委員長、竹中栄一委員、土井邦雄委員が9月24日に東大集まり討論の上まとめたものである。

　これについては分類を
　(1) 放射線像とは何か
　(2) 研究の目的
　(3) 研究の現状
　(4) 将来の見通し
　と変更した。この内、(1)～(3)までが修正案に含まれ、字句の修正などを加えた。これは、書きあらためて次回に出すため。

　(4)については佐藤和男委員長から原案が提出された。時間がないので、各人が持ち帰って検討を加えた上、修正部分を佐藤和男委員長に送付する。それをもとにして次回修正案を提出する。

2. 教科書
　第1編の数学部分の基本概念の原稿が提出された。内容が数学的に難解な立場をとっているため、教科書としては難解になると考えられ、この部分を別線にまわすことが提案されたが、しばらく考えてから決める。

　第1編の残りの部分については
　第1章　レスポンス関数
　第2章　ウィーナースペクトルと自己相関
　第3章　雑音
　第4章　情報理論
　第5章　感度
　第6章　調子再現

　のごとくに順序の変更をした。
3. 研究報告第2巻
内容と各線担当責任者を以下に示す。原稿は各責任者が12月末までに集めて内田先生に送付する。校正は同年2月、出版は4月の予定である。

序
まえがき

目次

第1編 解説
11-1 解説
③ 粒状性の解説
14-1 Grating法によるResponse関数の測定法
I測定法の概要

第2編 X線源
11-2 X線管焦点レスポンス関数の画像への影響
12-2 擴大撮影用X線管焦点のレスポンス関数

第3編 被写体と散乱線
11-3 被写体のスペクトルについて
第4編 蒔光材料と感光材料

12 - 1 増感紙−フィルム系のグラジェントとCross-exposure比

14 - 3 医用感光板の二・三の特性

17 - 2 迅速処理フィルムについて

18 - 3 ルミネッセンスの過渡現象の周波数特性とこれを利用して時間分解光法

第5編 間接撮影および光学系

13 - 6 撮影法によるX線間接撮影用レンズのMTF測定
第6編 イメージアンプフライアとテレビジョン

12-3 直接X線用P与Oディコンのレスポンス
飛田 勝 弘 名 大 放

14-5 X線テレビにおける運動と映像の一実験
野田 峰 男 日 立 亀 戸

15-3 イメージアンプフライア管を用いたX線テレビの1,2の特性
矢中 郷 信 日 立 亀 戸

16-4 X線テレビ像におけるイメージ増強と垂直解像力
野田 峰 男 "

17-4 中継子テレビ装置及びその応用
竹中 榮 - 東 大 放

第7編 X線像

12-4 X線像伝送系の倍率を含んだOTF
木下 幸 次 郎 NHK 基礎 研

14-4 Radiographの情報容量
中島 翔 彦 "

特別講演

電子計算機によるX線写真の情報処理,
胸部X線写真のパターン認識

第8編 粒状性とその影響

10-1 ラジオグラフィーにおけるX線量子の統計的ゆらぎと他の粒状性のウィーナースペクトルによる解析
高野 正 雄 富士フィルム

12-6 粒状性研究における問題点
土井 邦 雄 大日本塗料研

13-3 Scans in Measuring Wiener Spectra for photographic Granularity
土井 邦 雄 大日本塗料研

15-2 ラジオグラフィー用面面フィルムのウィーナースペクトル
土井 邦 雄 大日本塗料研

10-2 電波のマスキング効果II（文章とX線像については）
木下 幸 次 郎 NHK 基礎 研

11-4 X線TV装置のS/Nについて
菊地 緑 彦 "

- 57 -
12-5 X-TV装置のS/Nとリップについて

17-1 直接撮影のS/N比

第9報 特殊撮影

16-1 拡大撮影のレスポンス関数と感度

16-5 192Ir、103Rh線管用系における拡大撮影と識別能

18-1 最大情報量撮影第21報（高速連続撮影系の空間周波数特性）

18-2 最大情報量撮影第23報（60Co Radiography系の空間周波数特性）

18-4 同時二方向撮影の検討

15-6 192Ir、103Rh線管用系のレスポンス関数

13-1 運動体の撮影法

中島 緑 彦
木下 幸次 郎
小沢 甲子夫
林 一 成
鶴見 一 芝
白木 英 成
矢仲 重 信
野田 峰 男
土井 邦 雄

N H K 基礎研
N H K 職員局
日立 鹿 戸
大阪 大 医 放

佐柳 和 男
土井 邦 雄
前田 頼
内田 勝
山下 一 也
伊藤 憲 弥
内田 勝
林田 重 雄
山本 義 憲
内田 勝
山下 一 也
段床 薫 暦
前田 頼
佐藤 長 三 郎
平長 穂

キャノンカメラ
大日本塗料研
日本原子力研究所
阪大医技短大
阪大医技短大
阪大医技短大
大阪市民病院

(内田)

- 58 -
第10編 測定

15-1a 放射線測定系のフーリエ解析 第2報
（空中線量測定における電離型線量計のレスポンス関数）

15-1b 放射線測定系のフーリエ解析 第3報
（深部線量測定における電離型線量計のレスポンス関数）

15-1c 放射線測定系のフーリエ解析 第5報
（空間周波数領域における電離型線量計の線質依存性）

17-5 半導体放射線検出器による7線スペクトルの電算機による解析

第11編 定量診断

13-5 X線撮影におけるTechnical dataの導出過程とその規格化

10-4 診断の定量化について

第12編 R I 系

15-7 R I スキャンニング系のレスポンス関数

16-2 シンチカメラのレスポンス関数と感度

17-3 Spark Chamber による放射線分布像

18-5 フォトスキャニングのMTF

第13編 海外事情

資料目録

役員名簿

- 59 -
4. 次回委員会予定

場所：大阪
日時：12月
10月という月はいろんな行事があって賑やかな月であった。応物秋季学会、メシヒョオリンピック、10・21反戦統一デモ、八海事件公判、アポロ7号、・・・。

応物学会は九大工学部で行なわれた。光学ではホログラフィーは既に原理的な研究が終わり、応用が進んでおり筆者にとって理解困難、放射線では理解できるがわれわれ医療機には大分ポイントがずれている。仲々自分の専門分野の研究はないものだ。R I I 研究会は有益な存在であると痛感した。

三派学説といえば、マスコミの論説、対話などにおいて、大学人と学友人との間にいまだほど考え方が相違を思い知らされたことはない。いかなる場面においても大学人の沈着な面持ちは共通している。学外からの非難と学内からの突き上げは大学人を大きくゆきふれている。ここで筆者が一番恐れることはマスコミの影響力である。

人々が何らかのeventを批判するとき、その人々の判断はその人々が今までに得てきた情報を基礎としてその上に組み立てられた思考から発想するものであろう。したがって、その人の思考形式は過去から今までに得てきた主な情報源の性質に影響されるところが大きい。筆者の年代の者は戦時中の帝国主義教育を受け軍国主義マスコミによって育ち死地に赴いた。敵戦における果敢自失、そして決心したことば、もう決して二度とだめされるぞということであった。世界情勢においても、国内情勢でも、異なる情報源からの異なる批判時の情報を見ずに判断するべきであろう。もし一つしか得られないときは自分の判断を正しいと確信するべきではない。ソ連・チェコ問題においても、学長の機動隊学内導入を批判した眼でいま一度考えてみるのもおもしろいだろう。

われわれは非常に幸福な分野に住んでいる。それは、どこに行っててもフーリエ解析は認められるし、数学的な正しさは他の発言を通ずる。一つの仮定されたruleにしたがった発想が認められる世界だからである。これを理解したいがいる。

われわれは初心にかえって中学の不等式をもう一度勉強してみたい。ある数の近似値を行なったと思う。それらの数は非常に早く収束するものとしよう。その問題は1, 2, 3で殆ど完成してしまい、4, 5はそれの問題にして殆ど問題にならないはずである。三派学説はその4, 5であり、ここだけが大きく問題にされ、その発想によって決定的な1, 2の政府の行動がどうして大きく問題にならないのか不思議でならない。日本は戦争敗戦という一つのruleを内外に声明していっているはずである。これらあたりを政治だといってしまえば終わりだが。

さて、われわれは何にするべきか。大学人たちとも沈痛な面持ちにながらも得まい。われわれ研究者といえども社会の外には存在し得ないし、日本の将来を憂えること人後に落ちるものではない。いまこそすべからく心を建て、この世情に対処するべきである。 (S, U.)

- 61 -