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Abstract. To investigate the detection performance of our automated detection scheme for
clustered microcalcifications on mammograms, we applied our computer-aided diagnosis (CAD)
system to the database of the Mammographic Image Analysis Society (MIAS) in the UK. Forty-
three mammograms from this database were used in this study. In our scheme, the breast regions
were firstly extracted by determining the skinline. Histograms of the original images were used
to extract the high-density area within the breast region as the segmentation from the fatty area
around the skinline. Then the contrast correction technique was employed. Gradient vectors
of the image density were calculated on the contrast corrected images. To extract the specific
features of the pattern of the microcalcifications, triple-ring filter analysis was employed. A
variable-ring filter was used for more accurate detection after the triple-ring filter. The features
of the detected candidate areas were then characterized by feature analysis. The areas which
satisfied the characteristics and specific terms were classified and displayed as clusters. As a
result, the sensitivity was 95.8% with the false-positive rate at 1.8 clusters per image. This
demonstrates that the automated detection of clustered microcalcifications in our CAD system
is reliable as an aid to radiologists.

1. Introduction

Breast cancer is fast becoming the most dangerous women’s cancer in Japan due to the
westernization of life style. Palpation was formerly the only practical detection method
but usually only managed to detect the lesion at an advanced stage. Mammography is at
present the most effective method for early detection of breast cancer. A reduction in breast
cancer deaths of about 30% can be achieved by screening (Daniel 1989). Mammography
is able to visualize non-palpable and often minimal tumours smaller than 0.5 cm (Dhawan
et al 1996). However, retrospective studies have shown that radiologists do not detect all
breast cancers that are visible on the mammograms (Chan et al/ 1995). It is believed that
microcalcifications could indicate an early stage of breast cancer; they are basically markers
for early detection of some breast cancers in asymptomatic women (Dhawan et al 1996).

Many studies have been made to aid radiologists’ interpretation of mammograms,
especially at the stage of microcalcifications. Double reading of mammograms is very
helpful and may improve radiologists’ performance. A computerized image analysis system
might also be useful for improving the interpretation. In mammographic image analysis,
computerized systems are currently employed for the detection of masses and clustered
microcalcifications, and classification of mammographic lesions.
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A number of research groups have been investigating an automated method for
improving radiologists’ diagnosis of mammograms by developing computerized systems.
Giger (1993) and Vyborny et al (1994) reviewed the utilization of computer vision
and artificial intelligence for the development of computer-aided diagnosis (CAD) in
mammography. We also believe that CAD must come to be important as a second
line of attack in the diagnosis of mammograms given the rapid pace of development of
computer technology at present. We have therefore been developing an effective automated
detection scheme for masses and clustered microcalcifications in the mammograms of
Japanese women, and also for classification of the lesions. In our CAD system all the
images were digitized at a pixel size of 0.1 mm with 10-bit density resolution. We
also analysed the computed radiography (CR) images which are officially usable as the
mammography database of the Japan Society of Computer Aided Diagnosis of Medical
Images (CADM), and obtained magnificent results. Qur method for the detection of clustered
microcalcifications is based on density gradients and a triple-ring filter (Hirako et al 1994,
1995a). Microcalcification is detected from a two-dimensional density-gradient image by
analysing vector patterns that are similar to the shape of the microcalcification.

Many methods have been proposed for mammogram CAD systems (Giger 1993,
Vyborny et al 1994). All investigators always espouse their own new methods, and it
is not easy to evaluate their performance as a CAD system. This is mainly because each
group usually employs their own database; some consist of a small number of mammograms
and some include cases with only easily detectable lesions. One way to solve this issue is
to use a common database and to discuss their results using this database.

In the present study, to evaluate the ‘detectability potential’ of the system we applied our
scheme to the database of the Mammographic Image Analysis Society in the UK (called
the MIAS database) (Suckling et al 1994). This dataset was employed to analyse the
performance of our system in the detection of only the clustered microcalcifications.

In section 2 the MIAS database is briefly described. Methods used are summarized
in section 3. Details can be found in previous papers (Hara er al 1996, Hirako et al
1994, 1995a, b, 1996a, b, Fujita et al 1995), though most of them were written in Japanese.
Section 4 explains the results obtained from this application and includes discussion, and
the last section is the conclusion of this study.

2. MIAS databaset

Each of the mammograms in the MIAS database was obtained from the medio-lateral
oblique view and was digitized to a spatial resolution of 0.05 mm pixel size with 8-bit
density resolution. Four image sizes were provided, depending on the breast sizes: small
(4320 pixel x 1600 pixel), medium (4320 pixel x 2048 pixel), large (4320 pixel x 2600 pixel)
and extra large (5200 pixel x 4000 pixel).

Digitization was performed on a Joyce-Loeble scanning microdensitometre
(SCANDIG-3) which has a linear response in the range 0.0 to 3.2 optical densities. The
mammograms had been carefully selected from the United Kingdom National Breast Screen-
ing Programme. Unfortunately, from the 322 digitized images (161 patients) of the MIAS
database, only 249 images were included in our tape. To investigate the performance of
our CAD system in the detection of clustered microcalcifications, 43 images (19 abnormal
images with only microcalcifications and 24 normal images) were used from the obtained
249 digitized images. These 43 images had been classified depending on the character of

t Details in Web Browse homepage: http:/s20c.smb.man.ac.uk/services/MIAScom.html
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background tissues into three categories, fatty (n = 12), fatty-glandular (n = 12), and dense
(n = 19) in the database, and included a mixture of benign (n = 8) and malignant (n = 11)
cases where three cases contained two clusters and one case contained three clusters which
made a total of 19 images containing 24 clusters. From the list given there were in fact
25 images containing 30 locations of microcalcifications that could be verified as abnormal
images, but three of the database were not included in the tape, two were not used because
there was no specific location given, and one more image was defined by us as normal
because there was no cluster but only two big benign calcifications. Twenty-four images
were defined by us as normal cases, including the image which contained no cluster but
two benign calcifications. In this study the other side (left or right) of the microcalcification
images were employed as normal images. Please refer to the appendix for a comparison of
the data used for the present study with the dataset given.

3. Methods

To be able to apply our schemes to the MIAS database, each of the mammograms was
first compressed to an image with a pixel size of 0.1 mm. So that, for example, the
4320 pixel x 1600 pixel mammograms became 2160 pixel x 800 pixel images. Each of
them was then linearly converted o pixel values of 1024 (ten bits), and for further procedures
these mammograms were employed as original images. Figure | shows the flowchart of
our overall scheme for detecting clustered microcalcifications.

EXTRACTION OF BREAST REGION

l

SEGMENTATION OF SKINLINE AREA

1

CONTRAST CORRECTION

l

DENSITY GRADIENT CALCULATION

1

TRIPLE-RING FILTER ANALYSIS

|

VARIABLE-RINGFILTER ANALYSIS

1

FEATURE ANALYSIS

|

CLASSIFICATION OF CLUSTER AREA
AND DISPLAY

Figure 1. Flowchart of the overall scheme for detecting clustered microcalcifications.



2580 N Ibrahim et al

3.1. Extraction of breast region

To reduce the data of digital images and to limit the required area for the detection, the
border of the skinline in each mammogram was extracted by investigating the change of
density profile (Kato et al 1997). The smallest rectangle containing the breast region was
automatically extracted for further processing.

3.2. Segmentation of skinline area

For the segmentation of the skinline area from the breast area to limit the area for analysis,
we divided the breast region into two areas—skinline area without microcalcifications and
fatty and mammary gland areas. By using a density value histogram of the whole breast
region, within the already extracted image, we decided upon the pixel value about 70% from
the lowest pixel value as a threshold for determining the low-density area. The remaining
30% of the higher pixel value was extracted as the high-density area. Only the low-density
area containing the suspicious microcalcifications was analysed.

3.3. Contrast correction

In this study, the contrast was defined as the difference between the minimum pixel value
of a microcalcification and its background pixel value. In our previous papers (Hirako et al
1995a, 1996b), we found that there was a wide variation in the contrast of microcalcifications
depending on the surroundings, such as tissue types and background density value. We
believed that this situation occurred because of the contrast characteristic of the film used and
the location of microcalcifications. If microcalcifications exist in a denser mammary gland
area, higher absorption and dispersion of the x-ray beam in the surrounding tissues affect the
contrast of the microcalcifications. This means that the contrast of the microcalcifications
becomes less than it should be (Hirako er al 1996b). So, we analysed the contrast of each
microcalcification and the background pixel value. Here we used 20 mammograms that
included about 423 ‘true’ microcalcifications and plotted the contrast values of each pixel.
Figure 2 shows these data and the approximated one-dimensional curve for the analysis.
The approximation obtained is

y=ax+b. (1)

From this function we calculated the ratio r of the curve to the basic contrast s to correct
the contrast of all microcalcifications. The ratio is given by

r=s/(ax +b). (2)

We then used a contrast correction technique by using the approximated contrast correction
curve

y=s(l —a/2)loglax +b) +c¢ 3)

where s = 45.0, a = 0.18719, & = 10.217 and c is a constant which was obtained from
the integral calculation of equation (2). This is a procedure where each pixel’s contrast is
corrected to the selected basic contrast s by the ratio r. The result is shown in figure 3.
It should be noted that the slope of the curve in figure 3, the differential of the curve,
coincides with the value of r. All of the original mammograms used were then corrected
by this approximation.
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Figure 2. Dispersion of image contrast of each microcalcification depending on the background
pixel value. The one-dimensional approximation of image contrast in terms of pixel value,
obtained from 20 images, consisted of about 423 ‘true’ microcalcifications, is shown. Different
symbols show different image data.
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Figure 3. Contrast correction curve obtained by integral calculation of ratio r for the curve
shown in figure 2.
3.4. Density gradient calculation

Microcalcifications are very small, less than 0.75 mm in diameter. In digitized images,
even when dealing with ‘blurred’ images, microcalcifications are always smaller than
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10 pixels in diameter, extremely small signals to be detected. The signal intensity of
the microcalcification is also small in terms of density (pixel value) compared with that of
its surrounding tissues. Basically, its density gradient is concentrated in the central area
and constructs a particular cone-shaped vector pattern as shown in figure 4. This basic
pattern was used as the typical shape of a microcalcification because both direction and
magnitude components of the gradient vector are good features representing the presence
of microcalcifications (Hirako et al 1995a). To calculate the components of the gradient
vector, a Sobel filter was used on contrast corrected images. The Sobel filter is a type of
edge-detection filter and has the advantage of providing both a differencing and a smoothing
effect (Gonzalez and Woods 1992).

Figure 4. Typical density shape of a microcalcification. The circular cone structure is the
property inherent in microcalcification shadows. It is anticipated that the microcalcification
pattern can be detected if the region with a structure close to the circular cone is effectively
extracted based on the gradient vector of the density fall in the breast area (Hirako et al 1995a).

3.5. Analysis of gradient vectors by a triple-ring filter

A triple-ring filter was used to analyse the calculated density gradient. This filter is
composed of three different sizes of ring-shape subfilters which are three pixels (filter A),
five pixels (filter B) and seven pixels (filter C) in diameter, as shown in figure 5. These
subfilters are designed correspending to various sizes of microcalcification. To analyse the
density gradient, this triple-ring filter was superimposed iteratively on every pixel in the
gradient-vector image. Calculated vector patterns, direction and magnitude values in each
subfilter were then compared with the basic vector pattern. In this procedure, two features
called the ‘directional feature’ and the ‘magnitude feature” were determined as follows.
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Figure 5. A triple-ring filter shown with the basic vector pattern for a typical microcalcification.

3.5.1. Calculation of the directional feature. The directional feature was calculated as
follows. Firstly, the pixels were numbered according to the number of pixels in a subfilter.
Let a vector at a pixel with the kth address on the subfilter written as V; and the difference
of its direction from basic vector pattern be 8;(0 << 6 < 7). Seventeen directions were
determined for this procedure. Then a directional feature D was determined from the
average of a directional feature component d[= (1 4 asiné;) cosf]. So the directional
feature D for a subfilter composed of n pixels is given by

1 n
D=- > (1 +asin ) cos b 4)
k=1

where n = 8 for filter A, n = 12 for filter B and n = 16 for filter C. D takes a value from
—1 to 1. It approaches 1 when a candidate pattern is closer to the basic pattern and —1
when it is not. By setting the directional feature coefficient o to have a different value for
each subfilter, the weight for the directional feature was adjusted depending on the subfilter,
so even the vector patterns of the irregularly shaped microcalcifications were able to be
observed (Hirako et al 1995a).

3.5.2. Calculation of the magnitude feature. Generally microcalcifications absorb more
x-rays than the glandular tissues or blood vessels. In other words, the degree of decrease
of the density gradient, the magnitude value, becomes greater in microcalcifications. The
magnitude of a gradient vector is less affected by the size of microcalcifications but shows a
ring-like shape. This density feature was utilized as the magnitude feature. In the calculation
of the magnitude feature 7, the direction feature was also considered. It can be obtained for
each subfilter by the average of the directional feature components produced by each pixel
of the subfilters and the magnitude of the vector V; as shown below

1 n
I= ;Z|W1(1+asin9k)0059k- G
k=1
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3.5.3.  Detection of possible microcalcifications. After the directional and magnitude
features in each subfilter were calculated, those features were recalculated by the
combination of the three subfilters, and the threshold values for detecting candidates
microcalcifications were employed for these values. Three types of the subfilter
combinations were used as given below:

directional feature of (filter A + filter B)/2 = a
directional feature of (filter B 4 filter C)/2 = b
directional feature of (filter A + filter B + filter C)/3 =¢
magnitude feature of (filter A 4 filter B)/2 =4
magnitude feature of (filter B 4 filter C)/2 = ¢
magnitude feature of (filter A + filter B + filter C)/3 = f.

In this experiment, the threshold values for a, b and ¢ were set as 0.81, 0.81 and 0.79
respectively. Threshold values for d, e and f were equal at 30. These threshold values
were determined corresponding to a vector feature which became larger when the deepest
part of the microcalcification was being analysed by the triple-ring filter.

3.6. Variable-ring filter analysis

A variable-ring filter was then superimposed on the candidate microcalcifications which
were detected by the triple-ring filter. Since the weight o was adjusted during use of triple-
ring filter in order to detect the irregularly shaped microcalcifications, the filter was unable
to differentiate the cross-linear patterns such as blood vessels or glandular tissue. This is
because the vector pattern of these cross-linear patterns is very similar to the vector patterns
of irregularly shaped microcalcifications.

A variable-ring filter was utilized for discriminating and reducing these false-positives.
Basically, the variable-ring filter is ideal to use in the first stage of detection but it requires
a long detection time. In fact it is hopeless when many possible subjects for detection
are present. This is also one of the reasons why the variable-ring filter was utilized after
the triple-ring filter analysis. The filter changes its shape while analysing each candidate
detected by the triple-ring filter, based on a region growing technique in terms of the
magnitude of density gradient. From a cross-sectional profile of a microcalcification,
we are able to observe the distribution of the vector magnitude. The deepest part of a
microcalcification has a minimum value of the magnitude feature, called a local minimum
point, and the edge of the ring-shaped microcalcification has a maximum value, called a local
maximum point. The variable-ring filter changed its shape according to this distribution
of magnitude value when detecting the local maximum point. After the variable-ring
filter changed its shape and the candidate microcalcification which satisfied certain criteria
was extracted, this dynamic filter was also employed to recalculate the directional feature
and the magnitude feature of the candidates without weighting. Thus, the variable-ring
filter could accurately analyse each candidate’s characteristics which happened to change
according to their contrast features. So the filter was able to extract the irregularly shaped
microcalcifications and discriminate the false-positives. By using the contrast corrected
images, the average pixel value of each pixel within the filter was determined and this value
was employed as a threshold value for image binarization.

3.7. Feature analysis

To reduce the number of false-positives which still existed even after variable-ring filter
analysis, feature analysis was employed on those microcalcification candidates which were
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already preserved as binary images. Using these images, two features, an area and the
circularity of each candidate, were calculated. The contrast feature of the contrast corrected
images was also calculated. The threshold value for the area of a microcalcification was
determined as less than 50 pixels so as not to detect big benign calcifications. The circularity
was represented by 47 x (area)/(contour length)®. This value becomes larger when the shape
of a candidate is close to a circle (maximum value is 1.0) and smaller when it is not a circle.
The threshold value for this circularity was set as 0.5, so that the linear pattern tissues such
as blood vessels and mammary ducts and their crossing-points can be eliminated. The
threshold value for the contrast feature was set to the lowest value of 30 in terms of pixel
value difference.

3.8. Classification of cluster area and display

The remaining microcalcifications were then judged on whether they appeared to be
individual or clustered microcalcifications. A cluster area was automatically extracted when
more than three microcalcifications existed in an area of 50 mm?. This was based on the
judgment of an expert radiologist. A cluster area was displayed by a cloud shape. Figure 6
shows two examples of detected clusters for the MIAS database.

Each of the detected clustered areas was then classified. The classification of a cancerous
malignant cluster by our scheme was mainly based on the microcalcifications which are
(i) very small in size, (ii) concentrated at a point, (iii) numerous, (iv) different in size, and
(v) irregular in shape. The cancerous level of the clusters was shown by three different
colours of the cloud shape, where red is for malignant cases, yellow for intermediate cases
and blue for benign cases.

4. Results and discussion

We used 43 images from the MIAS database, which consisted of only microcalcifications, to
evaluate the potential of our system as a regular step to analyse various kinds of database.
Nineteen images were abnormal (which we considered to contain 24 clusters), and 24
images were classified as normal. From our experience and experiments we made for this
database, we noticed that when the threshold value of the magnitude feature was fixed
in the variable-ring filter, the detection performance was not greatly affected though we
changed the threshold value of magnitude feature in the triple-ring filter. So, in the present
study, we fixed the threshold value of the magnitude feature in the triple-ring filter at the
lower limit in order to detect as many microcalcification candidates as possible. But it
has to be noticed here that the threshold value of the magnitude feature in the triple-ring
filter has to be fixed at a suitable value because the lower the value is, the more time
it will take to detect the candidates. Then to investigate the detection performance of
our scheme the threshold value of the magnitude feature in the variable-ring filter was
varied.

Table 1 shows the results of the sensitivity of our system obtained by changing the
threshold value of the ‘magnitude feature’ in the variable-ring filter. In this experiment the
highest sensitivity of our system towards the MIAS database is 95.8% (23/24) at a false-
positive rate of 1.84 (79/43) clusters per image. One cluster was unable to be detected by
our scheme and we found that the microcalcifications were stuck to each other. However,
we only managed to employ the MIAS database which had a small number of clustered
microcalcifications. Although the sensitivity was higher than the sensitivity obtained from
the other databases of Japanese women (94.3% at a false-positive rate of 0.64 cluster per
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Figure 6. Two examples of detected clustered microcalcifications of (a) malignant and
(b) benign cases, which were processed by contrast enhancement for easy visualization on the
paper. The detected cluster area which contains more than three microcalcifications is shown
by the cloud shaped full line. The white dots are the microcalcifications.

image), it is hard to decide whether our CAD system for breast cancer is effective for
various databases. Using this scheme we were able to correctly classify about 70% (16/23)
of the detected clustered areas, with 7 of the 16 clusters classified as intermediate cases by
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Table 1. Results of true-pesitive (TP) and false-positive (FP) values obtained from MIAS
database analysis when the threshold value for the ‘magnitude feature’ in the variable-ring filter
is changed.

Magnitude feature TP(%) FP/image

60 66.6 0.14
50 87.5 0.70
49 815 0.93
46 91.6 1.63
41 91.6 1.72
39 95.6 1.84

the computer. We believe that our scheme could be improved to classify the MIAS database
in the near future with a high correction rate.

The curve of contrast correction of the MIAS database is shown in figure 3. Here
we used human sight aided by image processing to decide on the existence and locations
of microcalcifications and the contrast feature. There is no detailed information on the
exact location of each microcalcification and the number of microcalcifications given
from the MIAS database. Only the centre coordinate and radius of a circle where the
microcalcifications exist were provided. The contrast correction curve is also convenient
when different cases or databases are used for testing because there are many parameters of
the scheme which need to be readjusted for new cases. One way to facilitate this procedure
was proposed mainly for the case in which the imaging characteristic in terms of contrast
was different (Hirako er al 1996a). From the contrast correction curve shown in figure 3,
we are able to see the difference between the MIAS database contrast and other institution’s
databases by comparing the pattern of the curves.

5. Conclusion

We applied our CAD system for mammograms to 43 digitized images of the MIAS database.
We found that the sensitivity of our system is 95.8% with a false-positive rate at 1.84 clusters
per image and that we have to reduce the false-positive rate and increase the database.
Seventy per cent of the detected clustered microcalcifications were correctly classified.
Further analysis has to be done for tuning certain threshold values for better classification
analysis.

For the application of this system we only managed to employ one dataset (MIAS), but
we are now working on other databases from different Japanese research groups and also a
database from the United States. We are looking forward to utilizing many other databases
in the future to evaluate our mammogram CAD system.
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Appendix

A.l. Employed database

The images that were employed for this study were mdb200rm to mdb249lm except for two
images, mdb212rm and mdb214rs, for which no locations were verified. Images that were

unable to be used for a certain reason (see section 2) for clustered microcalcifications were
from mdb252rm to mdb256r].

A.2. Division of images

The MIAS database is defined only by the location of the microcalcifications not clustered
microcalcifications, and even the locations of microcalcification in one image were given
by more than one coordinate; the abnormalities were verified as one case per image. In
this study, all locations of microcalcifications given were defined as the number of clusters
which exist to be detected. From the 19 images where mdb223ls, mdb23911 and mdb249Im
contained two clusters, and mdb226rm contained three clusters, a total of 24 clustered
areas were found. The sensitivity of this scheme was obtained by calculating the detected
clustered areas divided by the 24 clustered areas from the 19 images.
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