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Automated Detection of Pulmonary Nodules
in Helical CT Images Based on an Improved

Template-Matching Technique
Yongbum Lee*, Takeshi Hara, Hiroshi Fujita, Shigeki Itoh, and Takeo Ishigaki

Abstract—The purpose of this study is to develop a technique for
computer-aided diagnosis (CAD) systems to detect lung nodules in
helical X-ray pulmonary computed tomography CT) images. We
propose a novel template-matching technique based on a genetic
algorithm (GA) template matching (GATM) for detecting nodules
existing within the lung area; the GA was used to determine the
target position in the observed image efficiently and to select an
adequate template image from several reference patterns for quick
template matching. In addition, a conventional template matching
was employed to detect nodules existing on the lung wall area, lung
wall template matching (LWTM), where semicircular models were
used as reference patterns; the semicircular models were rotated
according to the angle of the target point on the contour of the
lung wall. After initial detecting candidates using the two template-
matching methods, we extracted a total of 13 feature values and
used them to eliminate false-positive findings. Twenty clinical cases
involving a total of 557 sectional images were used in this study.
71 nodules out of 98 were correctly detected by our scheme (i.e., a
detection rate of about 72%), with the number of false positives at
approximately 1.1/sectional image. Our present results show that
our scheme can be regarded as a technique for CAD systems to
detect nodules in helical CT pulmonary images.

Index Terms—Chest helical CT images, computer-aided diag-
nosis, genetic algorithm, pulmonary nodule, template matching.

I. INTRODUCTION

THE mortality rate for lung cancer is higher than that for
other kinds of cancers around the world [1], [2]. At the

same time, it appears that the rate has been steadily increasing.
Not smoking is considered the most effective way to reduce the
incidence of lung cancer in most countries, while detection of
suspicious lesions in the early stages of cancer can be considered
the most effective way to improve survival [3]. Conventional
chest radiograms have been used to screen lung cancer in Japan,
and recently mass screening based on helical computed tromog-
raphy (CT) images has become popular for high-risk smokers
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in some Japanese facilities [4]. It is hoped that the use of he-
lical CT will help detect lung cancer at very early stages because
through this, it is possible to visualize small or low-contrast nod-
ules that could barely be seen on conventional radiograms [4],
[5]. However, this process may prove exhausting for radiolo-
gists since they will have to interpret over 30 images/patient.
In addition, since the majority of screening cases are normal,
diagnostic reading errors may be hard to avoid. Therefore, it is
necessary to develop a computer-aided diagnosis (CAD) system
to help radiologists with the interpretation.

CAD systems can aid radiologists by providing a “second
opinion” and may be used in the first stage of examination in the
near future. For that, it is important to develop many techniques
to detect and recognize suspicious lesions and also to analyze
and discriminate them. Although some methods of nodule de-
tection in chest CT images have been reported, their numbers are
relatively few. For example, Okumura, et al. reported the use of
CT screening devices and a filtering technique called “N-Quoit
filter” [6]. Kanazawa, et al. described diagnosis rules based on
fuzzy clustering [7]. Other groups have also proposed methods
for detecting nodules [8]–[12]. Kawata, et al. and McNitt-Gray,
et al. classified nodules as benign or malignant based on quanti-
tative feature values extracted from high-resolution CT images
[13], [14].

In this paper, we propose a new scheme to detect pulmonary
nodules automatically in chest helical CT images. The scheme
uses two template-matching methods in which nodular models
with Gaussian distribution are used as reference patterns. The
results of applying this scheme to a small number of cases are
presented as well.

II. OVERALL DETECTION SCHEME

To detect pulmonary nodules, we employed two tem-
plate-matching approaches based on simple models that
simulate real nodule. In this study, we classified lung nodules
regardless of medical classification. Only their locations (i.e.,
whether they are within the lung area or attached to the lung
wall) were considered. Nodules within the lung area tend
to have spherical shapes. In general, smaller nodules only
appear in one slice (two-dimensional) of a CT scan [Fig. 1(a)].
However, larger nodules can be found in a set of continuous
slices [three-dimensional (3-D)]. Nodules on the lung wall also
appear in one or more slices, depending on their size. However,
they are semicircular in shape [Fig. 1(b)]. We observed that
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Fig. 1. Definition and shape of the nodules in our study. (a) A nodule within
the lung area. (b) A nodule on the lung wall.

Fig. 2. Procedural flowchart for detecting lung nodules.

the nodules’ CT values followed a Gaussian distribution by
investigating the CT values in and around the nodules, as will
be discussed in the next Section. Therefore, we used nodular
models with Gaussian distribution as reference images for our
two template-matching methods.

Our procedural flowchart is shown in Fig. 2.
We developed a new template-matching technique based on

a genetic algorithm (GA) template matching (GATM) for de-
tecting nodules within the lung area. The genetic algorithm is a
probability search method based on the evolutionary principle of
living things and has been quite successfully applied to such op-
timization problems as wire routing, scheduling, adaptive con-
trol, game playing, etc [15]. Detecting lung nodules in helical
CT images with a wide search area can be regarded as an opti-
mization problem. Therefore, we applied the genetic algorithm
to efficiently search for lung nodules. GA template matching has
been described in our previous reports as a way to detect masses
in mammography [16] and chest radiograms [17]. In GA tem-
plate matching, 3-D helical CT images were used as observed
images, and spherical/circular nodular models were used as ref-
erence images [18].

A conventional template matching along the lung wall [lung
wall template matching (LWTM)] was also employed to detect
nodules [19]. In this template matching, each slice image was
used as an observed image, and semicircular nodular models
that had been rotated at an angle tangent to the lung wall were
used as reference images.

Since many false positives (FPs) were detected by both
template-matching methods, it was necessary to eliminate them
through feature analysis.

Fig. 3. Detection scheme using GA template matching (3-D).

Fig. 4. Average profile and range of CT values for ten randomly selected
nodules.

We will describe the details of GA template matching in Sec-
tion III, LWTM in Section IV, FPs elimination in Section V, and
detection performance in Section VI. Section VII and VIII will
consist of a discussion and conclusion, respectively.

III. GA TEMPLATE MATCHING

Fig. 3 illustrates the GA template matching method. GA tem-
plate matching was used to effectively search for the location of
spherical nodules that were scattered within the lung areas. In
this method, the genetic algorithm was used to determine the
target position in an observed image and to select an adequate
template image from reference images for template matching.
Details pertaining to the reference images and the GA process
are described below.

A. Reference Images Used in GA Template Matching

We supposed that the shape of the nodules was spherical by
investigating their CT value distribution. These tend to follow
a Gaussian distribution, as shown in Fig. 4. Therefore, we as-
sumed that we could approximate our nodular models using a
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Fig. 5. Reference images for GA template matching. (a) Spherical models
consisting of three slices. (b) Circular models.

Gaussian distribution. The nodular models were determined by
the following formula:

(1)

where is the pixel value of coordinate , and
and are parameters representing the maximum value and vari-
ance of the distribution, respectively. The value regulates the
scaling in . These parameters were decided experimentally.

The nodules in the helical CT images used in this study were
all under 30 mm, with the exception of one nodule that was
over 50 mm. To recognize these nodules, we used four spher-
ical models with Gaussian distribution, shown in Fig. 5(a) (three
continuous slices). The diameters of the models were 10, 20, 30
and 40 pixels (one pixel 0.68 mm), respectively. The size of
a reference image containing a model was 40 40 3 pixels.
Using these four models, we expected to detect nodules having
diameters of approximately 5–30 mm. Since the helical CT im-
ages used in this study were reconstructed at a 10-mm interval,
it was difficult to extract nodules smaller that with spherical
models. In order to detect these nodules, circular models con-
sisting of only the middle slice [Fig. 5(a)] were introduced,
as shown in Fig. 5(b). Therefore, the GA template matching
was performed twice, once using the spherical models and once
using the circular models as reference images.

B. The GA Template Matching Process

1) Chromosome: Each individual in our genetic algorithm
has a chromosome with data not only for determining a location
within the 3-D space of chest helical CT images but also for
selecting an adequate reference image. A chromosome is repre-
sented in binary digits and consists of a gene. An example of a
chromosome is shown in Fig. 6. Each chromosome has 25 bits,
of which 23 determine the target position and two select the ref-
erence image. Furthermore, the 23 position bits are divided into
9-, 9-, and 5-bit sets corresponding to the coordinates .
We extracted an image from the observed image that had the

Fig. 6. Example of a chromosome. Each chromosome corresponds to a
possible solution of the problem.

same size as the reference image and whose center the chro-
mosome determined. We called this image a cut image (Fig. 3).
Similarities between the cut and reference images were then cal-
culated. The chromosome shown in Fig. 6 selected the reference
image having the value of 2 and achieved fitness through
a template matching on the coordinate (113, 389,
14) in the observed image.

2) Fitness: We defined the fitness of the individual as the
similarity calculated by the cross-correlation coefficient nor-
malized covariance [20], [21], as

Similarity

(2)
where

The cross-correlation coefficient varies from 1 to 1 by the
Cauchy–Schwarz inequality. The values and signify the im-
ages for comparison. The value is the number of pixels in the
images. The value is the th pixel in image , the value is
the th pixel in image . The cross-correlation coefficient does
not depend on the CT values but only the shape of the pixel value
distribution in images and according to the denominator.

Since the evaluation of similarity depends on the difference in
background patterns between the cut and reference images, we
determined similarity only within the immediate area containing
a nodular candidate within both images (Fig. 7). The region ex-
cluding the background of the reference image [Fig. 7(a)] was
extracted using thresholding technique as a common area. The
common area in the cut image has the same position and size as
the area in the reference image [Fig. 7(b)]. So it was possible to
evaluate the two images without considering the difference in
background.

3) GA Process: Fig. 8 shows the GA process. First, the ini-
tial population was randomly generated from a sequence of ze-
roes and ones. Next, the fitness of each individual was calcu-
lated. Then, sharing [22] was applied. Sharing is a method that
makes it possible to obtain multiple solutions by decreasing
the fitness of a point after a sufficient number of individuals
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Fig. 7. Common area for evaluation. The common area for template matching
lies inside the circle. (a) Reference image. (b) Cut image.

Fig. 8. Schematic view of the genetic algorithm (GA).

have gathered around it. It is an effective method for executing
the GA in parallel as well as for detecting objects with dif-
ferent sizes or shapes. All individuals in the GA were subjected
to genetic operations (i.e., selection, crossover (in this case,
one-point crossover) and mutation). The individual population
was sorted by fitness value. The half that had the lower fitness
values were selected and replaced by new individuals had been
crossovered with the half having the higher values. Mutation
was executed as a bit inversion. The probability of mutation was
10% for each bit in the chromosome. The ten individuals having
the highest fitness values in a generation avoided the mutation.
The individual with the highest fitness in each generation was
continuously carried over to the next generation regardless of
any conditions. The process of fitness calculation, sharing and
genetic operations constitute one generation. The initial popu-
lation consisted of 124 individuals, and the maximum number
of generations was 200.

4) Fitness Condition: After the individuals having a
fitness fitness in each generation were
extracted, the coordinates of these chromosomes were regarded
as points constituting a nodule candidate. Here, is a constant
decided experimentally. This constant corresponds to whether
the spherical or circular models were used as reference images.

Here, when applying the circular models, another condition
was considered, as shown in the following:

(3)

Fig. 9. The largest rectangle out of a series of CT scans segmented 49 regions.

The function represents the fitness ( similarity) at the
coordinate in the observed image. As described in Sec-
tion A, circular models were used to efficiently detect nodules
in slices that were less than 10 mm thick. In fact, the model ten
pixels in diameter can detect most of these nodules. However,
when we employed GATM using circular models without con-
dition (3), the detection performance was not good. The number
of FPs, including small vessels approximately ten pixels in size,
increased remarkably. It is also possible to visualize nodules
smaller than 10 mm in a set of continuous slices because of the
principle of the reconstruction algorithm for helical CT images.
In fact, almost all nodules smaller than 10 mm used in this study
appeared in a set of continuous slices. From these factors, we
considered condition (3) when using circular models.

5) Region Segmentation for GA Template Matching: The
number of searches can be decreased by limiting the template
matching to the minimum region encompassing the whole lung
area. In this way, we extracted only the regions necessary for the
GA template matching from the 3-D chest helical CT images.
The extraction process was based on the pixel thresholding
technique. The process is as follows.

a) A rectangular area encompassing the approximated lung
fields on each slice image is determined by pixel thresh-
olding technique.

b) A rectangular prism corresponding to the minimum region
encompassing the whole lung fields is extracted in 3-D
space by applying the largest rectangle in a) of all slices.

c) The determined region is segmented into seven sections in
both the and directions (Fig. 9).

The GA template matching process was performed on each seg-
mented region. By searching only a few nodules in the seg-
mented region, we hoped that the searching performance would
improve for cases with multiple nodules. In fact, performing
GATM in each segmented region in c) achieved a better rate
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Fig. 10. Reference image used in LWTM. (a) Circular model with Gaussian
distribution. (b) Model formed by increasing the x-directional length of (a) by
20%. (c) Semicircular model formed by dividing (b).

of detection than performing it in a rectangular prism in b);
the number of individuals the number of generations the
number of segmented regions was constant.

IV. LUNG WALL TEMPLATE MATCHING

It is possible to detect nodules on the lung wall by GA
template matching if semicircular models are used as reference
images. However, considering that the conventional tem-
plate-matching method was more efficient than GA template
matching when we limited the search to the lining of the lung
wall, we chose to use the conventional method in low searching
iteration to detect nodules on the lung wall in this study. In
the conventional template matching method, each slice of a
chest helical CT scan was used as an observed image, and
semicircular models with Gaussian distribution were used as
reference images.

A. Reference Patterns for LWTM

Many nodules on the lung wall appeared as an oval divided
along the minor axis, called “semicircular” in this paper. Many
of them were small in size. Hence, two semicircular nodular
models with Gaussian distribution were generated from a cir-
cular model, shown in Fig. 10(a). The diameters of these models
were ten and 20 pixels. This implies that if the diameter of a
nodule on the lung wall is around 5–15 mm, it may be consid-
ered as a target for detection. First, to generate the reference pat-
tern, the diameter of the circle in the -direction was stretched
by 20% to make an oval model [Fig. 10(b)]. Then the new model
was divided into two semicircular models [Fig. 10(c)], which
would be used as reference images. Then, the reference image
was rotated corresponding to the angle tangent to the lung wall.
The size of the reference image containing the model was 20
20 pixels.

B. The LWTM Process

The template matching process along the lung wall is shown
in Fig. 11. The rough lung area was extracted using pixel thresh-
olding and labeling techniques. A rectangle encompassing the
extracted lung areas was determined. We defined the contour of
the lung wall as the first dot that the scanner encountered on
the enclosed area as it scanned from each edge of the rectangle
toward the lung area. The marked points (A and B A and C
B and F) on the extracted contour of the lung wall in Fig. 12
are all five pixels apart from each other in the a direction. Each

Fig. 11. The LWTM process.

Fig. 12. Rectangular region along the lung wall with a nodular model that has
been rotated at an angle tangent to the lung wall.

marked point has a search area similar to the rectangle shown in
Fig. 12. Search areas were set along the contour corresponding
with marked points. In the case of point A in Fig. 12, the search
area consists of a rectangle whose edges lie one pixel to the left,
seven pixels to the right, five pixels above, and five pixels below
point A. Here, the semicircular model was rotated at an angle
tangent to the lung wall within the rectangle. This angle was
determined by the gradient of the straight line connecting the
points D and E, which lie along the contour three pixels below
and above point A, respectively. The rotated model was used
as the reference image in the rectangle. The templates were ap-
plied to all pixels in the search area. If a similarity at a location
in the search area was greater than , we declared the candi-
date a suspicious nodule. Here, was a constant decided by our
experiment. The similarity was calculated by the correlation co-
efficient described in Section III.
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V. FP ELIMINATION

Our detection schemes encountered numerous FP candidates
so that it became necessary to develop some method to eliminate
them. We employed nine features in the GA template matching
and four features in the conventional template matching in order
to eliminate these FPs. Details of these features are described in
Sections A and B. Section C describes how the feature values
were used to eliminate FPs.

A. Features to Eliminate FPs Within the Lung Areas

1) Mean and Standard Deviation: There were parts of bone,
skin and mediastinum detected by the GA template matching
which appeared to have a concentration distribution similar to
nodular models. In our investigating, we found that these FPs
had higher overall CT values that varied greater than those of the
nodule candidates. Therefore, we employed a mean and stan-
dard deviation in the candidate region (40 40 pixels) to rec-
ognize these FPs.

2) Area, Circularity and Irregularity: Considering that a
nodule has a limited size and appears circular within a slice of
a chest helical CT scan, it is possible to recognize FPs by the
shape and size of the candidates. Therefore, area, circularity and
irregularity were introduced as features to delimit FPs. Irregu-
larity was defined as the standard deviation of the distance from
the center of the candidate region to the edge. Furthermore, the
candidate region was extracted automatically by calculating
these features while changing the threshold value (Thv) of the
pixel thresholding and labeling techniques. The initial Thv was
set to the mean CT value (Mctv) of the 3 3 pixel grid that
includes the center pixel of the candidates region minus 200.
The area, circularity, and irregularity were calculated while
adding 20 to Thv, and when those feature values were in a
range such that Area (pixels) Circularity ,
and Irregularity , the region was declared a candidate
region and the candidate was deemed a true positive (TP). The
parameters are equal to those shown in Fig. 13(b). When

, the candidate was deemed a FP.
3) Contrast and Max Mean CT Value: It is difficult to recog-

nize nodules from blood vessels running vertically with respect
to the slice image because both them are circular in shape. It
has been proven that such blood vessels tend to have higher CT
values than the nodules [7]. Therefore, we used the contrast and
max mean CT value to eliminate FPs, especially those caused
by blood vessels. Here, contrast was defined as the difference

between the mean CT values in the candidate re-
gion and the neighboring region enclosing it. If this
value is high, the candidate has marked contrast and is deemed a
FP. In addition, the max mean CT value was defined as the mean
value of the five maximum pixels in the candidate region. The
candidate region was extracted by the same method described
in 2) above. Then, the neighboring region was extracted by ex-
panding the size of the candidate region.

4) Directional Variance and Directional Cross-Correlation
of the Pixel Gradient: Nodules tend to have pixel gradients that
radiate from the center out. Some of the smaller FPs consisted
of diverged or intersected blood vessels. The direction of the

Fig. 13. Tendencies exhibited by the features of TPs and FPs and the
conditions necessary to eliminate FPs. (a) Tendencies exhibited by the features
of TPs and FPs. (b) Elimination condition for candidates detected by the GATM
method. (c) Elimination condition for candidates detected by the LWTM
method. t � t are experimentally determined threshold values.

pixel gradient in the surrounding region of such FP candidates
varied more than that of TPs. So by comparing the difference

in the directional variance of the pixel
gradient in a pixel region and that in a

pixel region (both of which contain the detected
candidate), we were able to distinguish the TPs from the FPs.
In our scheme, Kirsch’s filter was used to obtain the direction
and intensity of the pixel gradient. It should be noted that the
directional variance was calculated only if the gradient intensity
was greater that an experimentally determined constant.

In general, the percentage of the pixel gradient for a nodule
was nearly equal in all directions since it pointed to the center
of the nodule. But for a FP, it was different. Therefore, by cor-
relating of the pixel gradient in the detected candidate and the
nodular reference model, we were able to eliminate these FPs as
well. Kirsch’s filter was used here once more to provide a direc-
tion without limiting the intensity of the gradient. To calculate
the correlation of the pixel gradients, the (2) was also employed
here by replacing the pixel values and with the pixel gra-
dient values.
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B. Features to Eliminate FP Candidates on the Lung Wall

1) Inverse Difference Moment (IDM) and Entropy ENT): It
is more difficult to recognize the shape of the candidates on
the lung wall. In our study, we focused on the candidates’ tex-
ture and used the co-occurrence matrix, which is well known
as one of the typical methods in texture analysis to eliminate
FPs. We calculated some features from the co-occurrence ma-
trix , such as the angular second moment, entropy, in-
verse difference moment and contrast. As we observed in our
experiment, the IDM and ENT were more effective than other
features in decreasing the number of FP candidates. Their defi-
nition is as follows [23], [24]:

(4)

(5)

In (4), the IDM is large if the difference between and is
small in the matrix, such as in an image with flat pixel distri-
bution. In (5), the ENT is large if the constituent values of the
matrix tend to be equal. The ENT signifies the degree of vari-
ance in the image’s pixel values. By using these texture features,
it is possible to eliminate FPs that are difficult to extract from
the candidate region on the lung wall.

2) Area and Contrast: In addition, the area and contrast of
the candidate region were used to eliminate FPs. The candidate
region was determined by the pixel thresholding technique after
removing the lung wall area. Candidates whose size was outside
the detection range (less than 5 mm or greater than 15 mm) may
be eliminated as FPs by examining the area of the candidate
region. Contrast was defined as the same as A.3). Generally, the
contrast of FPs was greater than that of nodules.

C. Rules to Eliminate FP Candidates

Fig. 13(a) lists the tendencies exhibited by the features of TPs
and FPs. We eliminated FPs under conditions based on these
tendencies, as shown in Fig. 13(b) and (c). A candidate satis-
fying those conditions was eliminated as a FP. The threshold
values in Fig. 13 were determined experimentally. As
examples of feature distributions for true and FPs, the distribu-
tions of mean versus standard deviation and ENT versus IDM
are shown in Fig. 14(a) and (b), respectively. In the distributions,

320, 400, 0.11, and 6.12. For further
information, the values of other parameters are as follows:
250, 25, 0.52, 1.7, 270, 30, 0.16,

8.5, 1095, 230, 23, and 270.

VI. DETECTION PERFORMANCE

Our method was applied to 20 clinical cases (15 abnormal
and five normal cases), consisting of 557 slice images, with the
specifications shown in Table I. A physician detected 98 nodules
from the slices in these abnormal cases. The number of detected
nodules ranged from one to 20/case.

At first, the GA template matching method was able to detect
55 nodules with 3224 FPs. The number of FPs then dropped
to 333 through feature analysis, although one TP candidate

Fig. 14. Examples of the distributions of four features of TPs and FPs. (a)
Distribution of mean versus standard deviation. (b) Distribution of ENT versus
IDM.

TABLE I
HELICAL CT IMAGE SPECIFICATIONS

shown in Fig. 15 was also eliminated in the process. The reason
for eliminating this nodule was that it was attached to the
mediastinum and was not successfully segmented from it when
the candidate region was determined. The conventional LWTM
method detected 17 additional nodules that the first method
missed, with 1930 FPs. Through feature analysis, the number
of FPs dropped to 283. Table II shows our results in terms
of detection method and nodule size, and Table III indicates
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Fig. 15. TP candidate that the process of eliminating FPs deleted.

TABLE II
DETECTION RATE IN TERMS OF METHOD AND SIZE IN mm (SUCCESSFULLY

DETECTED/TOTAL COUNT)

the number of FPs before and after the eliminating process.
We found that our scheme was able to detect 71 nodules out
of the total 98 with 616 FPs. In this experiment, there were
no candidates that were detected by both template-matching
techniques. An example of candidates detected by our scheme
is illustrated in Fig. 16, in which two TPs and one FP are
included. The FP in Fig. 16 could not be eliminated by our FP
eliminating process.

VII. DISCUSSION

According to Table II, the cases used in this study include
many nodules having diameters smaller than 10 mm. Recently,
in order to detect nodules efficiently in their early stages, it is
becoming more and more necessary to identify them at a size of
5–10 mm. The results in Table II show the nodule detection rate
in terms of size. From these figures it is easy to see that the detec-
tion rate for these nodules was nearly 70%. Such results demon-
strated the potential effectiveness of our system. However, 21
nodules smaller than 10 mm were not detected. These missed
nodules consisted of three low-contrast nodules [Fig. 17(a)], two

Fig. 16. Candidates detected by our scheme. Circles indicate TP candidates.
A square indidates an FP candidate.

TABLE III
THE NUMBER OF FPS (RATIO OF FPS/SLICES)

flat nodules on the lung wall [Fig. 17(b)], three nodules attached
to the mediastinum (including the nodule in Fig. 15) [Fig. 17(c)],
three nodules in the pulmonary apex [Fig. 17(d)] and ten nodules
in the lung division [Fig. 17(e)]. The reasons that these nodules
were missed are as follows. The low-contrast nodules were un-
detected because their pixel value distribution varied consider-
ably from the template’s. The flat nodules on the lung wall were
missed because their shapes differed from the template’s. Since
no template matching was performed along the mediastinum in
this study, we could not detect any nodules attached to it. Finally,
we believe that artifacts during the scanning process primarily
caused us to miss the nodule in the apex and basis pulmonis.

Nodules larger than 10 mm were detected at a rate of over
80%. Of these nodules only six were missed. They consisted
of a nodule whose size was approximately 30 mm on the lung
wall [Fig. 17(f)], two nodules in the pulmonary apex region
[Fig. 17(d)], a low-contrast nodule [Fig. 17(g)] and two nodules
attached to vessels near the bronchus [Fig. 17(h)]. Although the
30-mm nodule was not detected in this study because the LWTM
was focused only on detecting nodules between 5–15 mm, we
confirmed that it could be detected by applying larger semicir-
cular templates. The reasons that the low-contrast nodule and
those in the pulmonary apex were missed are the same as out-
lined in the previous paragraph. Finally, we believe that it is ex-
tremely difficult to detect nodules attached to vessels near the
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Fig. 17. Missed nodules during detection. (a)–(c) and (e) show nodules
smaller than 10 mm. (d) and (f)–(g) indicate nodules larger than 10 mm. (a)
Small, low-contrast nodule. (b) Flat nodule on the lung wall. (c) A nodule
attached to the mediastinum. (d) Nodules around the pulmonary apex. (e)
Nodules around the base of lung division. (f) Nodule of approximately 30
mm on the lung wall. (g) Large, low-contrast nodule. (h) Nodules attached to
vessels near the bronchus.

bronchus because it is difficult to distinguish between the two,
as shown in Fig. 17(h).

At this time, the detection performances of other groups
[6]–[12] is better than ours. We think that our low performance

Fig. 18. Examples of eliminated and overlooked FP candidates. White
arrows indicate FP candidates removed by the elimination process. A black
arrow indicates a FP candidate that remained after the elimination process. A
transparent arrow indicates a detected nodule.

rate is caused by the low quality of the CT images and the
simplicity of the templates used in our study. However, we
found that, using only simple templates, it was possible to
detect typical spherical, circular and semicircular nodules
correctly. This implies that our method is useful in principle.
So if we can improve the image quality, such as by decreasing
of the number of artifacts, and apply more complex templates,
such as by using actual nodules, we believe that we can obtain
better results. Verifying this claim will form the basis of our
future study. In addition, many FP candidates remained in our
results. Since our detection methods are able to detect small
shadows of approximately 5 mm, most of the remaining FPs
consist of small vessels (Fig. 18). Small protrusions on the
lung wall, possibly small vessels or artifacts, also show up as
FPs, as shown in Fig. 16. Although the number of these FPs
may decrease by improving the templates for both matching
methods, we will also work hard to improve the process of FP
elimination.

Incidentally, the advantages of GA template matching have
been proved in simulation [25]. In the simulation, simulated
nodules whose sizes ranged from 5–30 mm were inserted into
3-D observed images, such as uniform space with random
noise, artificial chest CT images and actual chest helical CT
images. Then both GA template matching and conventional
template matching with pixel-by-pixel search was performed
to detect simulated nodules. As a result, we found that GA
template matching could detect all simulated nodules using
only 15% of the searching iteration required by conventional
template matching. Details of this study are described in
reference 25. The searching iteration of GATM in this study
was approximately 17% of that by conventional template
matching. This value was calculated as follows: (the number
of individuals the maximum number of generations the
number of segmented regions)/(the width of the slice image

the height of the slice image the average number of
slices/case). In our case, this was equivalent to (124 200
49)/(512 512 28). The actual processing time of GATM
and that of conventional template matching with pixel-by-pixel
search within the segmented lung regions were approximately
23 and 164 min, respectively, using Sun Ultra-30 with SPARC
processor at a clock frequency of 297 MHz.

The number of FPs by conventional template matching
with pixel-by-pixel search was approximately 158.6/slice
(88318/557) in the first detection step. After eliminating FPs,
it became 4.4/slice (2464/557). Comparing these numerical
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values with the number of FPs by GATM in Table III, we found
that a pixel-by-pixel search in this study would be impractical.

VIII. CONCLUSION

We proposed a new template-matching algorithm for the
detection of nodules in chest helical CT images using nodular
models with Gaussian distribution as reference images. To
detect these nodules, GA and conventional template matching
methods were applied within the lung area and along the lung
wall, respectively. Our nodule detection scheme performed
at a rate of approximately 72%. Moreover, it was possible to
eliminate nearly 88% of the FPs within the detected candidates
using a feature analysis of 13 features. From our results, we
found it was still difficult to detect low-contrast nodules and
those in the apex and basis pulmonis effectively, and the
number of FPs was as high as 30/case. We are working to deal
with these problems. Although our proposed method is open
to further discussion, we conclude that it has the potential in
principle to detect nodules in chest helical CT images.
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