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Development of an Automated Method for Detecting
Mammographic Masses With a Partial Loss of Region

Yuji Hatanaka*, Takeshi Hara, Hiroshi Fujita, Satoshi Kasai, Tokiko Endo, and Takuji Iwase

Abstract—Recently, we have been developing several automated
algorithms for detecting masses on mammograms. For our algo-
rithm, we devised an adaptive thresholding technique for detecting
masses, but our system failed to detect masses with a partial loss of
region that were located on the edge of the film. This is a common
issue in all of the algorithms developed so far by other groups. In
order to deal with this problem, we propose a new method in the
present study. The partial loss masses are identified by their simi-
larity to a sector-form model in the template matching process. To
calculate the similarity, four features are applied: 1) average pixel
value; 2) standard deviation of pixel values; 3) standard correlation
coefficient defined by the sector-form model; and 4) concentration
feature determined from the density gradient. After employing the
new method to 335 digitized mammograms, the detection sensi-
tivity for the partial loss masses jumped from 70% to 90% when
the number of false positives was kept constant (0.2/image). More-
over, a combination of the existing method and the new method im-
proved the true-positive rate up to 97%. Such results indicate that
the new technique may improve the performance of our computer-
aided diagnosis system for mammographic masses effectively.

Index Terms—Breast cancer, computer-aided diagnosis, mam-
mography, mass detection, template matching.

I. INTRODUCTION

RECENTLY, in Japan, incidences of breast cancer have
been increasing rapidly. It was reported that breast

cancer has the highest mortality rate of any women’s cancer.
Mammography has been introduced as an effective way for de-
tecting breast cancer in its early stages. However, there are few
physicians experienced in breast cancer diagnosis. Therefore,
it is necessary to develop a computer-aided diagnosis (CAD)
system to assist physicians in interpreting mammograms more
efficiently.

An automatic mass detection algorithm based on an adaptive
thresholding technique has been developed in our group. In
our initial study, a true-positive (TP) rate of 97% was achieved
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Fig. 1. Examples of masses with a partial loss of region, because of their
location on the edge of the film. Three malignant masses are shown with arrows
on each mammogram.

with an average number of 3.5 FPs/image [8]–[10]. Due to the
high number of FPs detected by our system, we have developed
some techniques to eliminate them. They include: using a
second-order statistics method [11], applying 11 features
for suspicious candidates [12] and comparing right and left
mammograms [13]; using a prewitt filter method [14]. Using
the above methods, the TP rate dropped slightly to 91%, but
the number of FPs decreased to 0.82/image. Testing our CAD
scheme for masses in over 6000 mammograms, it was found
that the detection sensitivity became lower as the number of
more difficult cases increased. Among these difficult cases,
we found that in most cases the masses had a partial loss of
region. In Fig. 1, three examples of partial loss masses are
shown. It is difficult to detect such masses using conventional
algorithms because of their lower circularity and irregularity
in shape. Reports for solving this issue have never been pub-
lished. In order to detect these kinds of masses efficiently, in
this study, we propose a new method based on a sector-form
model. Usually, breast cancer appears as masses and clustered
microcalcifications in mammograms. Many studies on auto-
mated detection schemes of mass shadows have been reported
recently [1]–[7]. For example, Laiet al. presented a method
for detecting circumscribed masses [2]. In their technique, the
mammograms were first enhanced by a selective median filter,
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Fig. 2. Flowchart for detecting masses on mammograms. The newly
developed method for mass detection is indicated by the boldfaced box.

and then template matching was used to identify suspicious
areas. Liet al. used a technique based on adaptive threshold
and segmentation using a modified Markov random field for
mass detection [3]. The detected masses were classified using
measures of shape complexity and the mean gradient of the
region boundary with a fuzzy binary decision tree. There are
some approaches based on the analysis of symmetry between
both sides of mammograms. Yinet al. developed a nonlinear
bilateral subtraction technique to identify asymmetries between
the right and left breast images [4]. Different from Yin’s ap-
proach, Mendezet al.have characterized the symmetries using
only one thresholding instead of the more complex methods of
linking multiple subtracted images [5]. In Japan, Matsumoto
et al. have developed a technique using an iris filter which
is based on the distribution of the concentration vector [6].
Hashimotoet al.proposed a subtraction technique to eliminate
false-positives (FPs) with an iris filter [7].

II. M ETHOD

The flowchart of our overall detection scheme including the
new method is shown in Fig. 2. It consists of eight stages: 1)
image digitization (0.05-mm sampling pitch and 12-bit density
resolution); 2) extraction of the breast region [15]; 3) reduction
of the image matrix (0.05–0.4 mm sampling pitch); 4) density
gradient calculation; 5) extraction of the pectoralis muscle re-
gion [16]; 6) extraction of mass candidates; 7) elimination of
FP candidates [11]–[14]; and (8) detecting masses with a par-
tial loss of region as a new stage. In this final stage, the search
area is first determined, and then some features are calculated.
Next, masses with a partial loss of region are detected using a
template matching based on a sector-form model. Finally, the
FPs are eliminated. More details are given below.

Fig. 3. Determining the search area. A bold line shows the search area.Area
A andArea Bare located inside and outside the pectoralis muscle, respectively.
Area Cwas defined as outside the search area.

A. Determining the Search Area

Since the masses to be detected by the newly proposed al-
gorithm are mainly located around the breast wall, the search
area was determined to be the area within the bold lines shown
in Fig. 3. The search area was divided into two parts,Area A
andArea B, which are located inside and outside the pectoralis
muscle regions, respectively. In this study, however, we chose
to ignoreArea Cbecause some misdetections occurred in this
area. While Fig. 3 shows an instance of a mammogram taken
in the mediolateral oblique (MLO) direction, the new algorithm
also works on mammograms taken in the cranio-caudal (CC) di-
rection. Since the pectoralis muscle does not appear in CC-type
mammograms, the search area in this case consists only ofArea
B, as shown in Fig. 3.

B. Calculating the Features

In the new method, we applied the following four features:
1) average pixel value; 2) standard deviation of pixel values; 3)
correlation coefficient defined by the sector-form model; and
4) concentration feature determined from the density gradient.
While 2) was also used as a feature in the existing method, fea-
tures 1), 3), and 4) are used only in the new method.

To calculate the feature values of 1), 2), and 4), the masks of
A and B shown in Fig. 4 were used. These masks were adopted
based on a sector model with a diameter of 41 pixels drawn in a
120 arc. When we experimented on sector models whose diam-
eters ranged from 31–51 pixels and arcs of 60–180 , we found
the above values worked the best. Considering that the change



HATANAKA et al.: DETECTING MAMMOGRAPHIC MASSES WITH A PARTIAL LOSS OF REGION 1211

Fig. 4. A and B are mask images used to calculate three feature values. The
images ofR andL are used as reference patterns for template matching. For
Area B, the similarity was calculated using both patterns,A andR;B; andL.
For Area A, the similarity was calculated using only the patternsA andR.

of density in the central part of the sector model is not significant
and that its value has no effect on the values of 1), 2), and 4), we
defined the masks without the seven-pixel-diameter circle in the
center of the sector model. The candidate was regarded to be at
the center of the sector model.

1) Average andStandard Deviation of Pixel Values:The av-
erage and the standard deviation of pixel values in both of the
back masks (A and B) in Fig. 4 were calculated. It is well known
that masses always appear as low-photographic-density areas
with a lower standard deviation of pixel values than those of the
mammary gland and blood vessels. Therefore, we may disregard
those candidates with either higher pixel values or higher stan-
dard deviations when calculating the values of 3) and 4). The
threshold value of the average pixel value was set experimen-
tally to 1500, and the threshold value of the standard deviation
was set experimentally to 650.

2) Correlation Coefficient:The correlation coefficient was
defined using the sector model. Assuming that the density of a
mass has a Gaussian distribution, we used such a distribution to
mimic a real mass in our study. The mass model was determined
from the Gaussian distribution by setting an area with a diam-
eter of 41 pixels and central angle of 120. Since the density
values in the center of a mass were low, we preferred to keep all
the central circles with a diameter of seven pixels in our sector
model as shown in Fig. 4. Thus, the template matching proce-
dure was applied using the sector-shaped images likeand
in Fig. 4 as the reference images.

If we define the density value of one point in the breast image
and the density value of the corresponding point in the reference

Fig. 5. Elements for calculating the concentration.d(x; y) represents the
intensity component of the density gradient. The value of�(x; y) shows the
angle determined by the direction from the center of mask to point(x; y) and
the direction of the density gradient.~D: density gradient vector.

image as and , respectively, we can deter-
mine as the correlation coefficient for template matching

(1)

where and are the means of each image. and
correspond to mammogram and reference image coordinates,
respectively. Summations were performed over the following
range of values: and ( : in-
teger).

3) Concentration: The concentration was defined
by the accumulative values in both regions A and B in Fig. 4,
and was calculated by the density gradient from a Sobel filter

(2)

where represents the intensity component in the density
gradient as shown in Fig. 5 and is given by the following:

(3)

where and point are shown in Fig. 6. Since
is influenced by the direction component of the density gra-
dient, it increases when the direction component turns to the
center of the mask. From the definition above, it is noted that

becomes greater when the direction of the den-
sity gradient turns to the center of mask and the value of den-
sity gradient becomes larger. In (3), “” is a fixed number, and
the value of the equation changes by varying “” as shown in
Fig. 6. The sin term is added inside the cos term so that a few
changes of will not influence greatly. The value
of 0.2 for “ ” was determined experimentally. Furthermore, the
greater such components of the density gradient are, the greater
the value of concentration will be.
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Fig. 6. The curves off(x; y) defined in (3) are plotted for six different values ofn.

C. Detecting the Masses With a Partial Loss by Similarity

1) Extraction of Suspicious Candidate Points:We used
and to calculate the similarity between the sus-

picious candidates and the sector model of a mass. Considering
that when a candidate is a true mass, its similarity to the sector
model should be significant, we defined the similarity as

(4)

The similarity was calculated in all search areas described in
Section II-A. It should be noted that for the two search areas in
Fig. 3, the patterns for feature calculation and template matching
were different. As illustrated in Fig. 4, forArea B, the similarity
was calculated using both patterns,and and , in Fig. 4.
But, for Area A, only the patterns and were employed to
obtain the similarity since using patternsand caused more
misdetections in the pectoralis muscle region. The reason for
this is explained below. Generally speaking, the pixel values
tend to increase (get darker) as one goes from the upper right
portion of the mammogram (toward the pectoralis muscle) to
the lower left (toward the nipple). In particular, changes in pixel
value are the greatest near the boundary between the pectoralis
muscle region and the breast region. To calculate the correlation
coefficient , we use a 41 41 pixel area of the mam-
mogram and the pattern or . Since pattern is based on
a Gaussian distribution, the pixel values increase as one goes
from the center to the lower left corner. Likewise, if one con-
siders certain sections of the pectoralis muscle region, the pixel
values increase in a similar fashion. In addition, when one con-
siders the mass candidate region, the same pattern emerges. Be-
cause of this, the number of false detections tends to increase
when one uses patternin the pectoralis muscle region. How-
ever, the pixel values of patternincrease as one goes from the
center to the upper left. When one considers the same sections
of the pectoralis muscle region mentioned before, none of the
pixel values increase in that direction. Therefore, using pattern

in the pectoralis muscle region, the pixel patterns of a mass,

Fig. 7. The area of suspicious candidates is decided by a quadrangle. The black
dots indicate the detected candidate points.

like the one in the leftmost image in Fig. 1, and those of the pec-
toralis muscle region appear different. As a result, it is possible
to reduce the number of false mass detections.

The threshold value of was set experimentally to 56
so that points whose similarity was greater than this value were
extracted as suspicious candidate points of malignant masses.

2) Determining the Area of Suspicious Candidates:In ad-
dition, the area of suspicious candidates was determined using
the information from the candidate points extracted above. The
points whose distance to neighboring candidate points were less
than 20 pixels were considered to be part of the same suspi-
cious candidate. The quadrangle for suspicious candidates was
determined by extending 20 pixels from the four farthest points
among all detected suspicious points in both theand di-
rections (Fig. 7). We found that all points of similarity larger
than the threshold around the highest point(s) of similarity cor-
responded to malignant masses, so we regarded any candidate
not following this pattern to be a FP.
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D. Elimination of FPs

The FPs were eliminated using a second-order statistics
technique [12]. There were four parameters utilized. From the
gray-level co-occurrence matrix, three second-order statistics
values, angular second moment (ASM), inverse difference mo-
ment (IDM), and entropy (ENT), were calculated. In addition,
a contrast (CNT) was set by the matrix based on the gray-level
difference method [8]. These features are defined as follows:

(5)

(6)

(7)

(8)

where represents the co-occurrence matrix,the difference
of pixel values, and the gray-level difference.

In (5), the ASM represents the texture’s smoothness. The
smoother the texture is the greater the value of the ASM be-
comes. In (6), the IDM is large if the difference betweenand

is small in the matrix, such as in an image with flat pixel dis-
tribution. In (7), the ENT is large if the constituent values of the
matrix tend to be equal. The ENT signifies the degree of overall
variance in the image’s pixel values. In (8), the CNT is large if
the difference between neighboring pixel values is large. Since
there was tendency for the ASM value to be small inside FPs, we
considered those candidates having small ASM values as FPs.
In addition, since the values of the IDM, ENT, and CNT were
experimentally found to be large in actual masses, we eliminated
those candidates having small values as FPs.

III. RESULTS AND DISCUSSION

To evaluate the new method for detecting masses with a par-
tial loss of region, we examined 335 mammograms including 30
images with a partial loss of mass region. The other 305 mam-
mograms were normal cases.

First, this dataset was tested by our existing method. Gener-
ally, the detection area for the existing method was defined as
the whole breast area. In this study, however, to compare the
existing and new methods, we limited the detection area to the
Areasdefined in Fig. 3. By adjusting the threshold values of the
existing method, we obtained the free-response receiver oper-
ating characteristic (FROC) curve shown in Fig. 8. According to
the results of the curve, when the fixed threshold was employed,
a TP rate of 70% was achieved with 0.23 FPs/image (point “a”
in Fig. 8). By changing the threshold, it was possible to get a
TP rate of 90% at an expense of 0.83 FPs/image (point “b” in
Fig. 8).

Then the performance of the new method was investigated.
By changing the threshold value of the similarity, a FROC curve
was drawn. When the threshold value of the similarity was 56,
the TP rate was 90% with 0.24 FPs/image (point “c” in Fig. 8).
Even when the threshold value was lowered to 40 or 30, the TP

Fig. 8. FROC curves for a database of 335 Japanese mammograms using either
the existing method or the new method, limited the detection area only toArea
A andArea Bas defined in Fig. 3.

rate remained at 90% at the expense of an increased number of
FPs ranging from 0.26 to 0.30/image.

From these FROC curves, it is noted that when the number
of FPs varies from 0 to 0.8, the TP rate achieved by our new
method is higher than that of the existing method, with fewer
FPs/image. Such results suggest that the new method may im-
prove the performance of our CAD system for detecting masses.

The new method failed to detect three masses. The mass on
one of the three images was not detected mainly because there
were calcifications within the mass. The reason that the other
masses were not detected was that the malignant masses ap-
peared as a linear shape which was significantly different from
our sector model for masses. However, in two of these cases,
our existing method was able to detect the masses properly; the
other mass was not detected because most of the mass was lost
when the mammogram was taken. Therefore, a combination of
both methods may improve our CAD system’s performance.

The results of combining both methods are shown below.
Here, we used an OR operation if either method indicated a
mass. The dataset was the same one introduced above, and a
TP rate of 97% with a 0.43 FPs/image (point “d” in Fig. 8) was
obtained when the search area for both methods was limited
to the Areasshown in Fig. 3. However, in actual use the ex-
isting method would be applied to the entire mammogram and
the new method to Areas A and B. Considering this, we con-
ducted another test. Our results yielded a TP rate of 97% with
1.2 FPs/image. This indicates the further necessity of improving
the FP reduction method.

We also experimented on a different database composed of
1 075 clinical mammograms. The database consisted of 31
masses, of which five showed a partial loss of region. The
existing method detected two of the masses with a partial loss
of region but failed to detect the other three. The new method
was able to detect all of the partial-loss masses with 0.29
FPs/image. For the existing method, the TP rate was 74% with
1.2 FPs/image. Combining the two methods yielded a 10%
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increase in the TP rate with only a 0.2 increase in the number
of FPs/image.

In conclusion, a new technique for detecting masses with a
partial loss of region was proposed in this study. The partial loss
mass was identified by its similarity to a sector form model in
the template matching process. After applying our new method
to 335 digitized mammograms, the detection sensitivity for the
partial loss masses jumped from 70% to 90% when the number
of FPs was kept constant (0.2/image). Moreover, the combina-
tion of these two methods improved the TP rate up to 97%. Such
results indicate that the new technique may improve the overall
performance of our CAD system for mammographic masses ef-
fectively.
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