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ABSTRACT 
 

We previously developed a scheme to automatically detect pulmonary nodules on CT images, as a part of computer-
aided diagnosis (CAD) system. The proposed method consisted of two template-matching approaches based on simple 
models that simulate real nodules. One was a new template-matching technique based on a genetic algorithm (GA) 
template matching (GATM) for detecting nodules within the lung area. The other one was a conventional template 
matching along the lung wall [lung wall template matching (LWTM)] for detecting nodules on the lung wall. After the 
two template matchings, thirteen feature values were calculated and used for eliminating false positives. Twenty clinical 
cases involving a total of 557 sectional images were applied; 71 nodules out of 98 were correctly detected with the 
number of false positives at approximately 30.8/case by applying two template matchings (GATM and LWTM) and 
elimination process of false positives. In this study, five features were newly added, and threshold-values of our 
previous features were reconsidered for further eliminating false positives. As the result, the number of false positives 
was decreased to 5.5/case without elimination of true positives. 
 
Keywords:  computer-aided diagnosis (CAD), computed tomography (CT), pulmonary nodule detection, template 

matching, genetic algorithm (GA), false positive elimination 
 
 

1. INTRODUCTION 
 

Computed tomography (CT) can help detect lung cancer at early stages because through this, it is possible to 
visualize small or low-contrast lung nodules that could barely be seen on conventional radiograms. However, a single 
CT examination has to interpret approximately 30 section images for 10-mm reconstruction intervals. Evaluating all of 
them must prove exhausting for radiologists. Therefore, some schemes have been developed to automatically detect 
pulmonary nodules on CT images, as a part of computer-aided diagnosis (CAD) system [1-12]. Of those, we have 
developed a nodule detection method based on improved template-matching techniques using simple models that 
simulated real nodules [4-7]. Candidates detected by the template matchings were classified by thirteen features as true 
positives (TPs) and false positives (FPs). By the scheme, although it was possible to detect typical spherical, circular 
and semicircular nodules correctly, it was difficult to detect some nodules such as with low contrast, located in the apex 
and basis pulmonis with artifact, and so on. Also, the remaining number of FPs was over 30 per case when the 
sensitivity was approximately 72%. To improve the performance, new processes to detect nodules in the difficult cases 
and to further decrease FPs are required. Therefore, in this study, we mainly focus on false positive elimination. In order 
to further eliminate FPs, we add five features and reconsider threshold-values of features been used in our previous 
work. In this paper, first, outline of our proposed detection scheme is described. After that, the details of improved 
process for further elimination of FPs are presented as well. 

 
2. OUTLINE OF DETECTION SCHEME 

 
We previously developed a new template-matching technique based on a genetic algorithm template matching 

(GATM) for detecting nodules within the lung area [4,6], and developed a conventional template matching along the 
lung wall [lung wall template matching (LWTM)] to detect nodules that attached to the lung wall [5]. For the template 
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matchings, simple nodular models that simulate real nodule were used as reference images. After the template 
matchings, thirteen features were used to classify false positives. 

Here, nodules within the lung area tend to have spherical shapes [Fig.1(a)]. In genera, smaller nodules only appear 
in one slice of a CT scan. However, larger nodules can be found in a set of continuous slices. Nodules on the lung wall 
also appear in one or more slices, depending on their size. However, they are semicircular in shape [Fig.1(b)]. We 
observed that the nodules’ CT values followed Gaussian-like distribution by investigating the CT values in and around 
the nodules. Therefore, we used nodular models with Gaussian-like distribution as reference images for our two 
template-matching methods. The nodular models were determined by the following formula: 
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where pvx,y,z is the pixel value of coordinate (x, y, z), and m and n are parameters representing the maximum value and 
variance of the distribution, respectively. The value k regulates the scaling in z. Four spherical models and four circular 
models (Fig.2) were generated for GATM. The diameters of the models were 10, 20, 30 and 40 pixels (one pixel = 0.68 
mm), respectively. Spherical models consist of three continuous slices. The GATM was performed twice, once using the 
spherical models and once using the circular models as reference images. Two semicircular nodular models were also 
generated from two circular models, as shown in Fig.3(c), for LWTM. The diameters of these models were 10 and 20 
pixels.  

Fig.4 illustrates the GATM method using spherical nodular models [4,6]. In the GATM, the GA was used to 
determine the target position in an observed image and to select an adequate template image from reference images for 
template matching. So, each individual in our GA has a chromosome with data for determining a location with the 3-D 
space of chest helical CT images (observed image) and for selecting an adequate reference image. A chromosome is 
represented in binary digits and consists of a gene. An example of a chromosome is shown in Fig.5. Each chromosome 
has 25 bits, of which 23 determine the target position and two select the reference image. Furthermore, the 23 position 
bits are divided into 9-, 9-, and 5-bit sets corresponding to the coordinates (x, y, z). The chromosome shown in Fig.5 
selected the reference image having the value of s = 2 and achieved fitness through a template matching on the 
coordinate (x, y, z) = (113, 389, 14) in the observed image. We defined the fitness of the individual as the similarity 
calculated by the cross-correlation coefficient, as 
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Fig.1 Definition and shape of the nodules in our study. (a) A 
nodule within the lung area. (b) A nodules on the lung wall. Fig.3 Making process of reference image used in LWTM. 

(a) Circular model which diameter is 20 pixels. (b) Model 
formed by increasing the x-directional length of (a) by 
20%. (c) Semicircular model formed by dividing (b). 

(a)              (b)              (c) 

(a). (b). 

Fig.2 Reference images of circular models for GATM. 

Diameter  10         20          30         40 pixels 
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The cross-correlation coefficient varies from -1 to 1. The values a and b signify the images for comparison. The value n 
is the number of pixels in the images. The value ai is the ith pixel in image a, the value bi is the ith pixel in image b. The 
cross-correlation coefficient does not depend on the CT values but only the shape of the pixel value distribution in 
images a and b according to the denominator. In the GA process, first, the initial population was randomly generated 
from a sequence of zeroes and ones. Next, the fitness of each individual was calculated. Then, sharing was applied. 
Sharing is a method that makes it possible to obtain multiple solutions by decreasing the fitness of a point after a 
sufficient number of individuals have gathered around it. It is an effective method for executing the GA in parallel as 
well as for detecting objects with different sizes or shapes. All individuals in the GA were subjected to genetic 
operations (i.e., selection, crossover and mutation). The individual population was sorted by fitness value. The half that 
had the lower fitness values were selected and replaced by new individuals had been crossovered with the half having 
the higher values. Mutation was executed as a bit inversion. The probability of mutation was 10% for each bit in the 
chromosome. The ten individuals having the highest fitness values in a generation avoided the mutation. The individual 
with the highest fitness in each generation was continuously carried over to the next generation regardless of any 
conditions. The process of fitness calculation, sharing and genetic operations constitute one generation. The initial 
population consisted of 124 individuals, and the maximum number of generations was 200. 
   LWTM process is shown in Fig.6. In the LWTM, first, the rough lung area was extracted using pixel thresholding 
and labeling techniques. A rectangle encompassing the extracted lung areas was determined. We defined the contour of 
the lung wall as the first dot that the scanner encountered on the enclosed area as it scanned from each edge of the 
rectangle toward the lung area. An example of extracted contour of the lung wall is shown in Fig. 7. Then, template 
matching was executed along the contour of the lung wall using the semicircular model that rotated corresponding to the 
angle tangent to the lung wall. The similarity was calculated by the correlation coefficient indicated in (2).  

After the template matchings, nine features in the GATM and four features in the LWTM were used to classify false 
positive candidates. The features and their tendencies are shown in Fig 8. These features were calculated in regions of 
interest (ROIs) including the candidate. A mean and standard deviation (Sd) were calculated from all pixels in ROIs 
(40x40 pixels). In our investigating, we found that these FPs had higher overall CT values that varied greater than those 
of the nodules candidates. Area, circularity (Cir) and irregurarity (Irr) were calculated in candidate region. Irregularity 
was defined as the standard deviation of the distance form the center of the candidate region to the edge. The candidate 
region was extracted automatically by calculating these features while changing the threshold value (Thv) of the pixel 
thresholding and labeling techniques. The initial Thv was set to the mean CT value (Mctv) of the 3x3 pixel grid that 

Fig.4 Illustration of GATM using spherical nodular model [4,6]. 

Four spherical models based
on 3D Gaussian distribution

Observed image
(Chest helical CT images)

Cut image Reference image

Image selected by
GA chromosomes

Determination of
cutting position by
GA chromosomes

Four spherical models based
on 3D Gaussian distribution

Observed image
(Chest helical CT images)

Cut image Reference image

Image selected by
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cutting position by
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Fig.5 An example of a chromosome. 

(x, y, z, s) = (113, 389, 14, 2) 
 

x: 9 bits (Max value 512) 
y: 9 bits (Max value 512) 
z: 5 bits (Max value 32) 
x: 2 bits (Max value 4) 
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includes the center pixel of the ROI (100x100 pixels) minus 200. The area, circularity and irregularity were calculated 
while adding 20 to Thv, and when those feature values were in a specific range, the region was declared a candidate 
region and the candidate was deemed a TP. When Thv > Mctv + 60, the candidate was deemed a FP. An example of TP 
candidate region is shown in Fig.9. In the Fig.9, the candidate region was determined when Thv = Mctv – 120. The 
determined candidate regions were also used to calculate contrast (Cont) and max mean CT value (Mmct). Contrast was 
defined as the difference (|Mc-Mn|) between the mean CT values in the candidate region (Mc) [Fig.10(a)] and the 
neighboring region (Mn) [Fig.10(b)] enclosing it. If this value is high, the candidate has marked contrast and is deemed 
a FP. Here, the neighboring region was extracted by expanding the size of the candidate region. In addition, the Mmct 
was defined as the mean value of the five maximum pixels in the candidate region. If Mmct is also high, the candidate is 
deemed a FP. 

Nodules tend to have pixel gradients that radiate from the center out. Some of the smaller FPs consisted of diverged 
or intersected blood vessels. The direction of the pixel gradient in the surrounding region of such FP candidates varied 

Input slice image

Extract contour of lung wall

Calculate angle tangent to the lung wall

Rotate reference pattern

Template matching

Nodule candidates

Input slice image

Extract contour of lung wall

Calculate angle tangent to the lung wall

Rotate reference pattern

Template matching

Nodule candidates

Fig.6 Procedural flowchart of LWTM Fig.7 Rectangle encompassing the lung area and extracted 
contour of the lung wall. 

Fig.8 Thirteen features used to classify FPs and an example of distribution of feature values. (a) Tendencies exhibited by the 
features of TPs and FPs. (b) Distribution of standard deviation versus mean. 

(b) (a) 
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Directional variance 
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Directional cross-correlation
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more than that of TPs. So by comparing the difference (|DvpgInn – Dvpgout|) in the directional variance of the pixel 
gradient in a 20x20 pixel region (DvpgInn) and that in a 40x40 pixel region (Dvpgout), FPs could be classified. In our 
scheme, Kirsch’s filter was used to obtain the direction and intensity of the pixel gradient. Fig.11 shows the images 
executed Kirsch’s filter and regions for calculation of the directional variance. It should be noted that the directional 
variance was calculated only if the gradient intensity was greater than an experimentally determined constant. In 
addition, by correlating of the pixel gradient in the detected candidate and the nodular reference model, FPs can be 
eliminated. Circular model that diameter is 40 pixels, shown in Fig.2, was used as nodular reference model. Kirsch’s 
filter was used here once more to provide a direction without limiting the intensity of the gradient. To calculate the 
correlation of the pixel gradients, the (2) was also employed by replacing the pixel values ai and bi with the pixel 
gradient values.  

We focused on the candidates’ texture and used the co-occurrence matrix [Q (i,j)], which is well known as one of 
the typical methods in texture analysis to eliminate FPs. Several features can be calculated from the co-occurrence 
matrix, such as the angular second moment, entropy (Ent), inverse difference moment (Idm) and contrast. As we 
observed in our experiment, the Idm and Ent were more effective than other features in decreasing the number of FPs. 
Their definition is as follows:  

 

∑ −+
=

ji ji

jiQ
Idm

,
2)(1

),(
,                                                                        (3) 

(a) 

Fig.9 Example of TP candidate and threshold images at each step. (a) Original image (100x100 pixels). (b) Threshold image 
when Thv=Mctv-200. (c) Threshold image when Thv=Mctv-160. (d) Threshold image when Thv=Mctv-120. Determined 
candidate region. 

(b) (c) (d) 

Fig.11 Candidate images (40x40 pixels) with the directions 
of pixel gradients indicated tiny arrows. Dvpginn is 
calculated in small rectangle region. Dvpgout is calculated in 
large rectangle region. (a) A TP candidate, Dvpginn=246.8, 
Dvpgout=146.0. (b) A FP candidate, Dvpginn=273.2, 
Dvpgout=240.5. 
 

Fig.10 Candidate region and the neighboring region for 
contrast calculation. (a) Candidate region. (b) Neighboring 
region. 

(a) (b) (b) (a) 
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In (3), the Idm is large if the difference between i and j is small in the matrix, such as in an image with flat pixel 

distribution. In (4), the Ent is large if the constituent values of the matrix tend to be equal. The Ent signifies the degree 
of variance in the image’s pixel values. By using these texture features, it is possible to eliminate FPs that are difficult 
extract form the candidate region on the lung wall. In addition, the area and contrast of the candidate region were used 
to eliminate FPs. The candidate region was determined by the pixel thresholding technique after removing the lung wall 
area.  

 
3. IMPROVEMENT IN FP ELIMINATION PROCESS 

 
Our FPs elimination process was improved by adding five features and by reconsidering threshold-values of features 

described in Section 2. The newly added features are show in Fig.12. 
Second mean (Scm) and second area (Scar) were applied to the candidates detected by the GMTM. They used to 

eliminate FPs that could not be eliminated by area, circularity and irregularity. Those FPs tend to be a part of vessels as 
shown in Fig.13. The overall shape of vessels could not be extracted in the previous changeable-thresholding technique 
as shown in Fig.9. Therefore, in this process, the constant-threshloding value was used to extract candidate regions 

Fig.14 Distributions of new features. (a) Distribution of second mean verses second area. (b) Distribution of local standard 
deviation and local mean. 
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Fig.12 Added new features for FP elimination. Fig.13 Eliminated FPs by second mean and second area. 
Upper indicate original images of FPs. Lower indicate 
threshold images to extract candidate region. 
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Fig.15 Distributions of max mean CT value verses area. (a) Distribution of candidates detected by the GATM using circular 
models. (b) Distribution of candidates detected by the GATM using spherical models. 

(a) (b) 

<10          10~20       >20        Total

GATM 35/51 13/16 6/7 54/74

Diameter (mm)
/method

LWTM 10/15 6/7 1/2 17/24

Total 45/66 19/23 7/9 71/98

Before FPs elimination

161.2 (3223/20) 16.7 (333/20)

After FPs elimination

True positives False positives

96.5 (1930/20) 14.2 (283/20)

257.7 (5153/20) 30.8 (616/20)

<10          10~20       >20        Total

GATM 35/51 13/16 6/7 54/74

Diameter (mm)
/method

LWTM 10/15 6/7 1/2 17/24

Total 45/66 19/23 7/9 71/98

Before FPs elimination

161.2 (3223/20) 16.7 (333/20)

After FPs elimination

True positives False positives

96.5 (1930/20) 14.2 (283/20)

257.7 (5153/20) 30.8 (616/20)

Table 1 Previous result. Detection rate in term of method and size in mm (successfully detected/total count) and 
the number of FPs (ratio of FPs/case) 

GATM: Reconsidering of threshold-value
LWTM: Using Lm and Lsd

# of FPs by GATM # of FPs by LWTMImprovement matters

3.5 (70/20)8.0 (160/20)

GATM: Using Scm and Scar
LWTM: Using Ldvpg

2.6 (51/20)2.9 (58/20)

Total

11.5 (230/20)

5.5 (109/20)

GATM: Reconsidering of threshold-value
LWTM: Using Lm and Lsd

# of FPs by GATM # of FPs by LWTMImprovement matters

3.5 (70/20)8.0 (160/20)

GATM: Using Scm and Scar
LWTM: Using Ldvpg

2.6 (51/20)2.9 (58/20)

Total

11.5 (230/20)

5.5 (109/20)

Table 2 Improved result of # of FPs (ratio of FPs/case). 

Fig.16 Examples of eliminated FPs in this study. 
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[lower images in Fig.13]. The feature values were calculated from the extracted candidate regions. The distribution is 
also shown in Fig.14(a). The Scm and Scar of FPs tend to be lower than those of TPs. Therefore, FPs could be classified 
by determining appropriate distinction lines. The distinction lines were determined experimentally. Local mean (Lm), 
local standard deviation (Lsd) and local directional variance of pixel gradient (Ldvpg) were used to eliminate FPs 
generated by the LWTM. Lm and Lsd were calculated in the 3x3 pixel grid that includes the center pixel of the 
candidate ROI. The distribution is shown in Fig.14(b). It is found that some FPs has lower Lm and higher Lsd. 
Therefore, FPs could be also classified by determining appropriate distinction lines. Calculation method of Ldvpg is 
similar to that of Dvpg described in Section 2. In this step, after deleting lung wall area, Dvpgout was calculated and used 
as Ldvpg. Compared with Ldvpg of TPs, several FPs had lower values of Ldvpg.  

  Then, we reconsidered threshold-values of features used in Section 2. Reconsidered features were area, Cont, Mmct 
and Dvpg. In Section 2, we described that the GATM was performed twice, once using the spherical models and once 
using the circular models as reference images, and the corresponding threshold-value in each feature for classification of 
FPs was obtained by the technique. To improve the FP elimination rate, in the current study, different threshold-values 
were used between the candidates detected by using the spherical models and those detected by using circular models. 
As an example, distributions of Mmct verses area are shown in Fig.15. The tendency is similar between Fig15(a) and 
Fig.15(b), however, notice that it is possible to eliminate further FPs by determining the detailed threshold-values. 

 
4. RESULT AND DISCUSSION 

 
   We applied our scheme to 20 clinical cases (15 abnormal and five normal cases), consisting of 557 slice images, 
with the 10mm slice thickness. A physician detected 98 nodules from the slices in these abnormal cases. The number of 
detected nodules ranged from one to 20 per case. Table 1 shows our previous results obtained by the scheme described 
in Section 2. The scheme had detected 71 nodules out of the total 98 with 5153 FPs. Then, through feature analysis 
using thirteen features, the number of FPs dropped to 616 (30.8/case). 
   The improved results of FPs elimination are shown in Table 2. It was possible to decrease the number of FPs from 
616 to 109 without eliminating TPs. Through this improvement, the number of FPs became 5.5/case while keeping the 
sensitivity of approximately 72%. The eliminated FPs in this study are shown in Fig.16 as well as Fig.13. Here, in this 
study, although our CAD performance was improved, many of parameters were determined experimentally using only 
20 cases. So, we need more samples of nodular cases in CT images for analytically determining these parameters.. 
 

5. CONCLUSION 
 
   The outlines of our detection scheme based on two template-matching techniques (GATM and LWTM) and feature 
analysis were described. In the scheme, feature analysis for FPs elimination was improved by adding five features and 
by reconsidering threshold-values of features in this study. Through the improvement, the number of FPs became 
5.5/case from 30.8/case while keeping the sensitivity of approximately 72%. We are now working to collect more cases 
and to obtain higher sensitivity.  
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