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liver segmentation in non-contrast torso CT images
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Abstract. In this paper, we proposed a method to generate a probabilistic atlas of liver and use it for
liver region segmentation from non-contrast torso CT images. The atlas was defined by two kinds of
probability: liver location and its density (CT number). We developed a method to normalize the
liver location in different patient cases by deforming the pre-segmented diaphragm and bone to a
standard position and to generate a normalized likelihood image to present probability of liver
location in torso CT image by projecting a large number of liver regions into a 3-D space. A
Gaussian window function with dynamic parameter estimations was used to calculate the probability
of liver density. 80 patient cases of non-contrast CT images with the pre-segmented liver regions
were used for performance evaluation. We repeated the atlas generation and atlas-based segmentation
of liver region based on non-contrast torso CT images using a leave-one-out method. The mean value
of the coincidence ratio between the pre-segmented liver and atlas-based segmentation result was
found to be 84%. The validation and usefulness of our atlas construction method were proved.
© 2005 CARS & Elsevier B.V. All rights reserved.
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1. Introduction

The remarkable progresses of multi-slice CT technology enable radiologists to scan a
larger volume of human body in a shorter scan time with a higher isotropic spatial
resolution in one-time CT imaging. The computer-aided diagnosis (CAD) system is
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expected to increase the lesion detection accuracy of radiologist and decrease the
interpretation burden. Liver is one of the most important diagnosis target organs of the
CAD system. Lesion detection and surgery planning of liver always require the CAD
system to extract the liver region firstly from CT images. However, without any prior
information, the traditional image processing methods cannot provide a reliable extraction
of liver region automatically from non-contrast CT images. The atlas-based segmentation
can be expected to solve this problem. Park et al. proposed a method for abdominal
probabilistic atlas construction [1] and some further approaches were also reported [2,3].
However, how to map the anatomical structures between different CT images automati-
cally and precisely could not be solved completely in [1-3]. Spatial registration for an
organ region in different CT images is very important not only for atlas construction but
also for atlas-based segmentation. In this paper, we proposed a new method to normalize
the anatomical location of liver based on the diaphragm warping and construct a
probabilistic atlas with high precision for liver in torso CT images. Finally, we also showed
a fully-automatic approach to segment liver region from non-contrast torso CT images
based on probabilistic atlas.

2. Methods
2.1. Probability of liver region

We define the P(4) as the probability of each voxel that belongs to liver region in a CT
image, and P(B) as the probability of liver location in the spatial anatomical structure of
human torso, and P(C|B) as the density (CT number) distribution of liver region in a CT
image. Using the above definitions, we can get the following equation.

P(4) = P(BN C) = P(B) x P(C|B) (1)

The probability P(4) is regarded as the “liver probabilistic atlas” which can be
calculated by P(B) [probability of the anatomical location of liver region in human torso]
and P(C|B) [density histogram (probability) of the liver region in a CT image]. This
research tries to develop the methods to estimate the P(B) and P(C|B) and generate the
probabilistic atlas P(4) for liver segmentation.

2.2. Construction of liver probabilistic atlas

We investigated a method to estimate the probability P(B) based on the anatomical
structure of human body. The spatial relations between liver, bone structure, and
diaphragm were used for the estimation (Fig. 1). Our method normalized the liver
position, size, and shape by adjusting the cross-sectional area of bone frame to a
standard and warping the diaphragm to a plane based on a thin-plate spline method [4]
firstly (refer to Fig. 1(c)), and then create a normalized likelihood image of liver by
projecting a lot of pre-segmented liver regions into a 3-D space (refer to Fig. 1(d)). For
an unknown CT image, we can extract the bone and diaphragm [5,6] firstly and warp
the normalized likelihood image (Fig. 1(d)) inversely to estimate the P(B) of the liver
location in inputted CT image.

After the P(B) estimation, we proposed a method to estimate the P(C|B) that can
be considered as the density distribution inside of the liver regions. We used a
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Fig. 1. The probability estimation for liver location. (a) Pre-segmented liver and bone. (b) Spatial relations
between liver, bone, and diaphragm (dotted line). (¢) Normalizing liver position and shape by deforming the
diaphragm and bone to a standard position (rectangle). (d) Spatial voting to generate a normalized likelihood
image to show the probability of liver location using 80 patient cases of CT.

Gaussian model to approximate the density distribution of liver by the following
equation.

p(yilie Liver) = \/ZIR?EXP( O;GZ #) ) 2)

The Gaussian parameters can be estimated by observing the density histogram of the
region that each voxel i should satisfy the condition [ P,(B)>0]. We selected the CT
number which was the maximum peak in the histogram as the mean value p and
decided a Gaussian distribution N(y, o) which had the same FWHM (full width half
maximum) with the observed density histogram. Then, we calculated the P(C|B) from
the CT images by a probability transformation using the N(u, ¢) as a characteristic
curve (Fig. 2). A likelthood image (Fig. 2(c)) was generated to show the probability
P(C|B) which indicates the probability of liver on CT numbers.

The probability P(4) for a CT image can be obtained simply by a multiplication of
P(B) and P(C|B). In fact, we generated a total likelihood image of liver as the probabilistic
atlas by an image multiplication (see following section). ~

2.3. Atlas-based liver region segmentation

Using the constructed probabilistic atlas, we developed a procedure to segment a liver
region from torso CT images. This procedure includes 5 processing steps. We describe
each processing step as following sentences and shown schematically in Fig. 3. (1) The
bone region is extracted using a gray-level thresholding method [5] and the diaphragm is
identified based on the shape of air regions inside the lungs [6]. (2) Using the bone and
diaphragm (Fig. 3(b)), the normalized likelihood image of liver location (Fig. 3(c)) is
warped and a special likelihood image (Fig. 3(d)) that shows the probability P(B) of liver
location for inputted CT images is generated. (3) Based on the region that satisfied
P(B)>0, the density probability P(C|B) (Fig. 3(e)) is estimated using a transformation
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Fig. 2. The probability estimation for liver density. (a) Original CT image (I coronal slice). (b) Probability
transformation based on Gaussian model. (¢) Likelihood image that shows the probability of liver on CT numbers
(1 coronal slice).

from inputted CT images (Fig. 3(a)) (refer to Section 2.2). (4) Probabilistic atlas P(4) (Fig.
3(f)) of liver for inputted CT images is generated by multiplication of P(B) (Fig. 3(d)) and
P(C|B) (Fig. 3(e)). (5) The liver region is segmented by a thresholding on probabilistic
atlas P(4) and finally refined using a connected component processing (Fig. 3(h)). The
procedure was designed in a fully-automatic mode without any assistance by operators.

3. Experiment and results

80 patient cases of non-contrast torso CT images were used in the experiment. Each
image has an isotopic spatial resolution of about 0.6 mm and density (CT number)
resolution of 12 bits. The liver region in each image was extracted for atlas construction and
accuracy evaluation for segmentation results using a semi-automatic segmentation method.
We evaluated the performance of our method using a leave-one-out method (selecting 79
patient cases to construct a liver atlas and use it to segment the liver region from the surplus
1 case). We also investigated the validity of our atlas construction method.

At first, we investigated the density distribution of the pre-segmented liver region in CT
images and found that density histogram of liver region in each patient case was quite
close to a Gaussian distribution. However, the mean value and standard deviation of the
liver density in each case varied largely. Using our Gaussian parameter estimation, we
confirmed that the mean coincidence ratio between the real density distribution and
estimated Gaussian model was 94% in 80 patient cases. The margin of the error was
caused by the vessels that were recognized incorrectly as a part of liver region during the
pre-segment process. The experiential result showed that the density of liver region can be
presented by a Gaussian distribution and Gaussian parameters should be estimated
respectively from the CT images for the different patient cases.

We confirmed that normalizing the liver location in different patient cases was very
important before constructing the probability of liver location; we compared the results of
the likelihood images of liver location before the normalization (Fig. 4(a)) and after the



X Zhou et al. / International Congress Series 1281 (2005) 1169-1174 1173

Fig. 3. The processing results of liver segmentation. (a) Original CT image. (b) Extraction results of diaphragm
and bone. (c) Normalized likelihood image of liver location. (d) Likelihood image of liver location for panel (a).
(e) Likelihood image of liver density. (f) Probabilistic atlas of liver region. (g) Pre-segmented liver and bone. (h)
Atlas-based segmentation result of liver region.

normalization (Fig. 4(c)). We measured the convergence of probability of liver location
(refer to Fig. 4(b)) and confirmed that our method (warping the diaphragm and bone
structure to reduce the variance of liver location and shape in different CT images) was
very effective to improve the accuracy of the atlas on liver location.

Based on the probabilistic atlas P(4) (Fig. 3(f)), the liver region was extracted by
simply selecting the voxel i that satisfied the condition (P;(4)>0.03), and then, the binary
regions were refined by a binary morphological processing [ball with r=2 (pixels)]. At
last, the biggest connected component was decided as the liver region. We confirmed that
the liver region in each patient case was segmented correctly. The mean coincidence ratio
between extracted liver region (Fig. 3(h)) and pre-segmented liver region (Fig. 3(g)) for all
patient cases was about 84%. We found that this error was caused by the vessels inside of
the pre-segmented liver region which has the different density distribution and was not
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Fig. 4. The comparison of the likelihood image of liver location estimations. (a) Result without liver location
normalization by warping the diaphragm. (b) Result after normalizing the liver location by diaphragm warping,
(c) Convergence of the probability of liver existence with and without warping.

regarded as the part of the liver region during the atlas generation [refer to Section 2.2:
P(C|B) estimation using a Gaussian model]. This problem can be solved by improving the
accuracy of the pre-segmented liver region.

4. Conclusion

We proposed a method to construct a liver probabilistic atlas from non-contrast torso
CT images by estimating the probabilities of anatomical liver location and density
distribution of liver region. We confirmed that our construction of liver atlas was feasible
and effective; the liver probabilistic atlas may be useful to reduce computation cost and
increase the robustness of liver segmentation process.
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