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Abstract— The detection of unruptured intracranial
aneurysms is a major subjeet in magnetic resonance
angiography (MRA) images. However, it is difficult for
radiologists to detect small aneurysms on the maximum
intensity projection (MIP) images, because adjacent vessels
overlap with the aneurysm. The purpose of this study was to
develop an automated computerized detection of aneurysms in
order to assist radiologists’ interpretation as a “second
opinion.” The vessels were first segmented from background

by use of gray-level thresholding and region growing technique.

The gradient concentrate (GC) filter was then applied to the
segmented vessels for enhancement of aneurysm. The initial
aneurysm candidate was identified in the GC image with a
gray level threthold. For removal of false positives (FPs), we
determined three features, i.e., size, sphericity, and mean value
of GC image in each of the candidate regions. Finally, the
rule-based schemes with these features and quadratic
discriminant analysis were applied for distinction between
aneurysms and FPs. The sensitivity of our method for detection
of aneurysms was 100% (7/7) with 1.85 ¥Ps per patient. With
our computerized scheme, all aneurysms were detected
correctly with low FP rates, and would be useful in assisting
radiologists for identifying correct aneurysms and for reducing
the interpretation time,
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I. INTRODUCTION
The detection and management of unruptured

intracranial aneurysms is a major subject in magnetic
resonance angiography (MRA) images, because most of
subarachnoid haemorrhage arises from rupture of an
infracranial aneurysm [1]. Between 3.6 and 6% of
population harbor an intracranial aneurysm. The ruptured
rate of asymptomatic aneurysms was thought to be 1-2% per
annum [1]. However, it is difficult for radiologists to detect
small aneurysms in MRA image, because some adjacent
vessels overlap with the aneurysm on maximum intensity
projection (MIP) image. Therefore, the purpose of this study
was to develop a computer-aided diagnosis (CAD) scheme
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for detection of intracranial aneurysms on MRA images in
order to assist radiologists’ interpretation as a “second
opinion.”

In the previous study for detection of intracranial
aneurysms in MRA image, Arimura ef al. [2]-[3] developed
a method for detection of aneurysms based on the 3D
selective enhancement filter. They reported the sensitivity
for detection of aneurysms was 100% with 2.4 false
positives (FPs) per patients by use of a database consisted of
29 cases with 36 aneuwrysms and 31 non-aneurysms cases,
Rohde ef al [4] developed a method based on Fourier
analysis to provide an objective factor for assessment of the
risk of rupture. Their quantitative assessment with 45
unruptured  intracranial aneurysms and 46 ruptured
intracranial aneurysms showed surface irregularities in 78%
of unruptured and 42% of unruptured intracranial aneurysms.

In this study, we developed an automated computerized
method for detection of aneurysms based on gradient
concentrate (GC) filer. Since a new method with low false
positive rates is required for clinical application, we
investigated the usefulness of features obtained from GC
filter.

II. METHODOLOGY

A. Clinical Cases

We selected twenty MRA studies, which were acquired
on a 1.5 T magnetic imaging scamner {Signa Excite Twin
Speed 1.5T; GE Medical Systems, Milwaukee, W1} by use
of a 3D time-of-flight technique in the Gifu University
Hospital (Gifu, Japan). The 3D MRA images included slices
ranged from 50 to 140. The axial image matrix size was 256
x 256 pixels with the pixel size ranged from 0.625 mm to
0.78 mm. The slice thickness ranged from 0.5 mm to 1.2
mm.

All original 3D MRA images were converted to
isotropic volume data by using linear interpolation, where
each of the volume data was 400 x 400 x 200 voxels with a
voxel size of 0.5 mm. Twenty clinical cases were used in
this study, which included 7 abnormal cases with 7
aneurysms (diameter, 2.3 to 3.5 mm; mean, 2.8 mm) and 13
normal cases. The locations of all aneurysms were
determined by one of authors (H.A.). 4 aneurysms were
located at middle cerebral artery, 2 aneurysms at internal
carotid artery, and 1 aneurysm at posterior cerebral artery.



B. Segmentation of Vessel Regions

To limit the search spaces to the aneurysms, and to
avoid generating FPs due to the outside of vessel regions,
the vessel regions were first segmented automatically.
Because the maximum and minimum values of the voxels
were different in each of twenty 3D MRA images, the linear
gray-level transform was applied to the 3D MRA images so
that minimum value was zero and the voxel values higher
than 99% of the cumulative histogram were changed as a
maximum value of 1024. To segment vessels regions from
background, the gray-level thresholding was applied to the
3D MRA images with a threshold level of 700, which was
selected empirically. With this method, the regions of large
vessels were segmented correctly. However, it is difficult to
segment small vessels, because the voxel values in small
vessels were low intensities, and extra-vessel structures
were segmented together with lower threshold level. To
tackle this problem, we used a region growing technique,
which start with the regions of segmented large vessels as
“seed” points and grow regions by appending to each seed
point when a value in neighboring voxels was larger than
500. Fig.1 shows the result of our method. Most of the
vessels were segmented correctly.

C. Determination of Initial Aneurysm Candidates

For enhancement of aneurysms and suppression of
vessels, we used a GC filter based on iris filter [5]-[7],
which was designed to enhance rounded convex regions by
measuring the degree of convergence of the gradient vectors
around a point of interest. However, a difficulty of GC
filters in the application to 3D image processing is time-
consuming. Therefore, we used a simplified version of GC
filter, and the GC filter was applied to the vessel regions
segmented from background. The simplified GC filter used
in this study was defined by

GC(p) = %Zcosﬂj )
R

The output value of GC filter at the point of interest p was
computed within the regions of a sphere with radius R at the
center of p. R was given as 5 pixels in this study. A is the
number of voxels when the gradient magnitude located at ;
was larger than zero. The angle # is the angle between the
direction vector from p to j and a gradient direction vector
located atj. The gradient magnitude and gradient direction
were calculated by the first-order difference filter.

For identification of initial aneurysm candidates, the
gray-level thresholding technique with a threshold level of
50 voxel value was applied to the image obtained by GC
filter. The threshold level was selected empirically. We
determined the initial aneurysm candidates as the “islands”
whose size was larger than 10 voxels, because the threshold

Fig.1. THustration of (a) MIP image of original MRA slices and (b)
segmented vessel image.

level was gives as the smallest value so that the regions of
all aneurysms could be detected, and thus a lot of small
“islands” were also detected.

D. Removal of False Positives

For removal of FPs, we used three image features, i.e.,
size, the degree of sphericity, and mean value of GC image.
The size was gives as the number of voxels in the regions of
initial aneurysm candidate. The size may be useful a feature
for eliminating FPs, because the sizes of some FPs were
smaller or larger than those of aneurysms. The degree of
sphericity, which was defined by the fraction of the overlap
volume of the candidate with the sphere having the same
volume as the candidate, may be also useful a feature for
distinction between vessels and aneurysms, because some
FPs were line-like or more irregular compared with
aneurysms. However, the degree of sphericity used in this
study can not find small dot-like objects such as aneurysms,
because it is difficult to quantify the shape of surface
accurately when the size of candidate was small. Thus, we
used mean value of GC image in the candidate regions as
another feature. Some FPs may be eliminated by simple
rules with these three features. Therefore, the rule-base
scheme with these three features was used as the first step
for removal of FPs.

In the final stage of our CAD scheme, quadratic
discriminant analysis [8] with three features was carried out
for further removal of FPs. The quadratic discriminant
analysis generates a decision boundary that optimally
partitions the feature space spanned by three features into
two class, i.e., aneurysm class and FP class. The decision
boundary for quadratic discriminant analysis was a quadratic
surface given by discriminant function. The output value of
discriminant function indicates the likelihood of aneurysm.
Thus, we can classify the aneurysm candidates into true-
positive class and FP class by partitioning the feature space
with a threshold level of discriminant function. By changing
the threshold level, we can determine the performance for
detection of aneurysms with our CAD scheme.
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Fig. 2. Relationship between size and degree of sphericity in each
of initial candidate regions (aneurysms: circles; false positive: dots).
The dotted lines indicate the thresholds for removal of false
positives.

. RESULTS

The computerized scheme for detection of intracranial
aneurysms was applied to 20 clinical cases. All of the 7
aneurysms were detected correctly with 31.8 FPs per patient
at the initial identification step based on the GC filer. The
result indicates that the regions of all aneurysms were
segmented correctly by use of our method for extracting
vessel regions in the pre-processing, because the GC fiiter
was applied to the regions of segmented vessel. We also
found that the GC filter was useful for detection of
aneurysms, because the regions of aneurysms have a high
value in the GC images. However, a lot of FPs were
remained at the initial step.

For removal of these FPs, we used three image features,
i.e., size, degree of sphericity, and mean value of GC image,
which were obtained from each of initial aneurysm
candidates. Fig.2 shows the relationship between size and
degree of sphericity. The circles and dots indicate
aneurysms and FPs, respectively. As shown in this figure,
the sizes of some FPs were smaller or larger than those of
aneurysms, and some FPs were less circular compared with
aneurysms. Thus, the size and the degree of sphericity were
useful features for distinction between aneurysm and FPs.
However, some FPs whose sizes were small have high
values in the degree of sphericity, because it is difficult to
quantify the shape of surface accurately when the size of
candidate was small. Fig.3 shows the relationship between
size and mean value of GC image. The mean value of GC
image was useful for eliminating small line-like FPs. We
applied the rules indicating the dotted lines in Fig.2 and
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Fig.3. Relationship between size and mean value of gradient
concentrate image in each of initial candidate regions (aneurysms:
circles; false positive: pluses). The dotted lines indicate thresholds
for removal of false positives.

Fig.3 to the initial candidates. As the result, 91% FPs were
eliminated with the rule-based scheme.

In the final step, the quadratic discriminant analysis
with three features was applied for further removal of FPs.
As the result, all of the 7 aneurysms were detected correctly
with 1.85 FPs per patient. Fig.4 shows the FROC curve for
overall performance of our CAD scheme in detection of
intracranial aneurysms on MRA images. The FROC curve
was made by changing the threshold level of decision
boundary. As shown in the FROC curve, the sensitivity
decreased rapidly with lower FP rate. Thus, it is difficult for
further removal of FPs by use of these three features. Fig.5
shows 4 aneurysms and 4 FPs, which were obtained from
the final results as examples. We found that these FPs were
difficult cases for distinction between aneurysms, Therefore,
it may be needed other features or methods in the further
work.

IV. DISCUSSION

Because our database was small data set, same data was
used for training and testing in the evaluation of the overall
performance of our CAD scheme. Therefore, we need to
evaluate our CAD scheme with large data set in the further
study. Furthermore, since our cases were selected from one
hospital, we need to collect many cases acquired from
different MRA scanners in other hospitals for clinical
application.

In addition, we need to conduct an observer
performance study for detection of aneurysms without and
with the computer output indicating the location of
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Fig.4. FROC curve for overall performance of our CAD scheme in
detection of intracranial aneurysms on MRA images.

aneurysms in order to investigate whether radiologists’
performance is improved or not. This result will indicate
that radiologists are able to use the computer output as a
second opinions to improve their diagnostic accuracy.

V. CONCLUSION

We have development a CAD scheme for detection of
unruptured intracranial aneurysms in MRA images. With
our CAD scheme, the sensitivity of the detection of
aneurysms was 100% (7/7) with 1.85 FPs per patient.
Therefore, this computerized scheme may be useful for
radiologists in detecting unruptured intracranial aneurysms
in MRA images. In our study with small data sets consisted
of 20 clinical cases, we found that GC features are useful for
distinction between normal vessels and aneurysms. However,
further studies are required by use of large data sets to
evaluate our computerized method.
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Fig.5 Hlustration of {a) intracranial aneurvsms and (b) false positives.
The aneurysms and false positives are located in the center of each
image. The top and third rows show the output images of gradient
concentrate filter. The second and fourth rows show the results of our
computerized method. The regions of gray color are initial aneurysm
candidates. The regions of white color are the output of removal of
false positives.
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