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bstract

This paper describes a fully automated segmentation and recognition scheme, which is designed to recognize lung anatomical structures in the
uman chest by segmenting the different chest internal organ and tissue regions sequentially from high-resolution chest CT images. A sequential

egion-splitting process is used to segment lungs, airway of bronchus, lung lobes and fissures based on the anatomical structures and statistical
ntensity distributions in CT images. The performance of our scheme is evaluated by segmenting lung structures from high-resolution multi-slice
hest CT images from 44 patients; the validity of our method was proved by preliminary experimental results.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

Due to the development of multi-slice computer tomography
CT) technology, a modern CT scanner [1,2] can now gener-
te a large number (500–1000) of slices for each patient’s CT
mage scan, covering a large volume of the human body within a
hort time. Based on this high performance, radiologists can eas-
ly photograph the whole human chest, abdomen, or torso with
igh spatial resolution in a one-time CT scan. Using such high-
esolution CT images, observation of complicated anatomical
tructures in the human body and discovery of small abnormal
egions in different organs has become possible. However, CT
mage interpretations (viewing 500–1000 slices of CT images

anually in front of a screen or films for each patient) require
lot of time and energy. Therefore, computer-aided diagnosis

CAD) systems that can support CT image interpretations are
trongly anticipated.
The typical requirements for a CAD system can be sim-
ly described as “capacity to detect any suspicious regions
utomatically and show them to a doctor for judgment”. Two

∗ Corresponding author. Tel.: +81 58 230 6510; fax: +81 58 230 6514.
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entation; Lung-structure recognition

asic functions (abnormality detection and visualization of CT
mages) are necessary for a CAD system. In order to realize
uch functions, a pre-segmentation of the principal human organ
egions and recognition of human structures from CT images
re always necessary. In the case of chest CT imaging, the lung
s the principal region and the lung structure constructed by
ung vessels, bronchus, and lung fissures is an important ref-
rence for lung cancer, pneumonia and diffuse lung diseases
ecisions in clinical diagnosis. Recognition of the lung struc-
ure is the most basic and indispensable aspect of successful
AD, and definitively influences the efficiency of the overall
AD system. Many research works [3–9] focusing on segment-

ng a special target region such as the lung, bronchus, vessels,
nd so on from chest CT images have been reported, few of
hem have been found to provide global recognition of anatom-
cal structures of human lungs based on high-resolution CT
mages.

This paper describes a fully automated segmentation scheme
or lung-structure recognition based on high-resolution multi-
lice CT images. Instead of developing several independent

lgorithms corresponding to different organ region extractions,
ur research attempts to recognize the human structures by
egmenting the different organ regions simultaneously, based
n normal anatomical structure of the human chest and sta-

mailto:zxr@fjt.info.gifu-u.ac.jp
dx.doi.org/10.1016/j.compmedimag.2006.06.002
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istical intensity distributions on high-resolution CT images,
hich contain sufficient and precise three-dimensional (3-D)

nformation on the human chest. The segmentation process
as been designed as a recursion of the region-splitting pro-
ess to identify different organ and tissue regions sequen-
ially, based on a pre-defined order, which is decided based
n the spatial and density relations of the those organ regions
ithin the lung structure. Instead of using fixed parameters

uch as density threshold values for region segmentations, our
ethod attempts to make dynamic parameter optimizations

o enhance the compatibility and robustness of CAD system
or different CT images. Further, a portion of our processing
rocedures is designed following a basic policy of “extrac-
ion → validation → correction” to enhance the reliability of
egmentation results.

This paper is organized as follows. Section 2 simply describes
he anatomical structure of the lung region on CT images
nd shows the concrete goal of lung-structure recognition in
ur scheme. Section 3 presents the whole policy of our lung-
tructure recognition method and describes each part of our
ethod in detail. We show our experimental results and give

ome performance evaluations of our method in Section 4 and
rovide a summary of this research in Section 5.

. Lung structure

The lung, the site of gas exchange, is filled with air that has a
ow density (about −1000 HU) on CT images. In addition to air,
ulmonary vessels and bronchi are the principal constituents of
he lung regions.

Lung regions include the left and right lungs. The left lung
s further separated into two lung lobes (upper lobe and lower
obe) by an oblique fissure. The right lung is separated into three
ung lobes (upper lobe, middle lobe, and lower lobe) by oblique
nd horizontal fissures.

The geometry of the bronchial airways in the human chest can
e approximately described as a binary tree structure. The tra-
hea (the root of the airway tree) divides into two main branches
left primary bronchi and right primary bronchi), which enter
nto the right and left lungs. The primary bronchi further divide
nto five (two left, three right) lobar bronchi that enter each lung
obe, respectively. The lobar bronchi divide repetitively and gen-
rate 8–10 segmental bronchi trees in each lung region.

The pulmonary artery and veins are also distributed in a tree
tructure like that of the bronchial airway in the lung regions.
he branch of the pulmonary artery always runs parallel to the
ronchi.

Based on the above anatomical knowledge, the goals of our
ung-structure recognition scheme can be simply defined as (l)
egmenting and dividing the regions over the whole lung into
ve lung lobes; (2) segmenting the bronchus and recognizing
ts anatomical tree structure; (3) extracting and dividing pul-
onary vessels on a lobe-by-lobe basis; and (4) extracting each

nter-lobe fissure – that is, any that are observed to exist on CT
mages – and refining the lung lobe regions based on the fissure
egmentation results.

3

m
b

ing and Graphics 30 (2006) 299–313

. Method and materials

Multi-slice chest CT images from 44 patients, generated by
kinds of multi-slice CT scanners (in 10 cases, by Aquilion

f the Toshiba Medical System; in 34 cases by LightSpeed
ltra of the GE Medical System), are applied as the input
ata of our scheme. Each patient was imaged by a common
rotocol (l20 kV/Auto mA, helical pitch: 1.35/1) without any
ontrast enhancement, and the images were created using a
ormal reconstruction kernel and stored in Digital Imaging
nd Communications in Medicine (DICOM) format [10]. After
ICOM format decoding, each patient case of CT images was

xpressed as a 512 × 512 × 400–633 matrix that covered the
ntire human chest region with an isotropic spatial resolution
bout 0.63–0.74 mm and 12-bit density resolution. The output
f our scheme is a 3-D image in which each voxel has been
ttached with a pre-defined label that can be used to refer to the
ung structure shown in the previous section.

The basic idea of our method can be simply described as
using the air-filled region inside the human chest to estimate the
ange of various lung regions and using airway tree of the bronchi
o recognize anatomy structures in the lungs”. Our scheme tries
o recognize the details of these human structures gradually as
hown in Fig. 1. The process consists of five main steps: (l) initial
egion segmentation of chest CT images, (2) extraction of the
rachea and bronchi and recognizing the branches of the bronchi
ree, (3) extraction of the lung regions and separation of the
eft and right lung, (4) extraction of pulmonary vessels, and (5)
ivision of the lung regions into five lung lobes and extraction of
he inter-lobe fissures. Each of these steps is described in detail
n the next section.

.1. Initial region segmentation of chest CT images

The goal of this step is to separate human body regions from
ackground and make an initial classification that divides the
uman body region into three components: fat, other tissues
including bone, organ, vessels, and so on) and air-filled regions,
s shown in Fig. 2. We use a gray-level thresholding method
o identify the regions based on their respective density dis-
ributions. Instead of using fixed threshold values to segment
arget regions, our process uses a histogram analysis method
hat can determine the optimal threshold value just for the cur-
ent CT image automatically. The details of this step are as
ollows.

.1.1. Preprocessing of CT image
We extract the CT image data slice-by-slice from DICOM

ormat files and arrange them into a 3-D data array based on
he information inside the DICOM heads. This 3-D data array
s regarded as the original CT image (Fig. 2(a)); it has nearly
sotropic spatial resolution in 3-D.
.1.2. Threshold value selection
The next step is to decide the optimal threshold value for seg-

enting human tissues from the background that is almost filled
y air. We assume that the total region of a CT image consists
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Fig. 1. Processing flow of lu

f only two components: air regions and human tissue regions
ith different density distributions. We measure the degree of

eparation between those two density distributions on a gray-
evel histogram using a discriminant analysis [11], and select
he gray level (T1 in Fig. 3) that has the maximum value of
eparation degree as the optimal threshold value for segmenting
uman tissues, as distinct from air regions (refer to Fig. 3). Due
o the relation of density distributions among different human

issues shown in Fig. 4, the fat can be separated from the other
issues using the CT value of water, which is about 0 (HU). We
se a process to select the optimal gray level (T2 in Fig. 3) by
earching for the zero-cross point of differential values on the
ucture recognition scheme.

istogram – that is, the point nearest to 0 (HU) – and use it to
dentify fat regions (Fig. 3).

.1.3. Gray-level thresholding
Using the selected threshold values T1 and T2, we separate

uman tissues from background as follows:
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ig. 2. (a–d) Processing flow of initial region segmentation (step l
f Fig. 1).

.1.4. Connected component processing
We use the 3-D connectivity analysis to select the connected
omponent (18-neighborhood) with the biggest volume from
uman tissue regions (gray level > T1) as the real chest region
Fig. 2(b)) and delete the remaining regions.

Fig. 3. Threshold value selections based on histogram analysis.
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Fig. 4. CT value distributions in different organ and tissue regions.

.1.5. Surface detection and region filling
We extract the outline of the human chest using a 2-D border

ollowing method that traces the external borderline between
uman tissue region and air region slice-by-slice. Then, we
imply use the whole region circumscribed by the borderline,
egarding it as the chest region (Fig. 2(c)).

.1.6. Region subtraction
We identify the air regions inside the human chest by sub-

racting the air region (black region in Fig. 2(b)) from the chest
egion (gray region in Fig. 2(c)) and finally output the latter
Fig. 2(d)).

.2. Trachea and bronchus extraction and bronchial tree
ecognition

The trachea and bronchus have a tubular structure and are
lled with the air, which means we can identify the tracheal
nd bronchial region by extracting the airway tree from the
ir region inside the human chest (output of step 1 in Fig. 1).
or extracting the airway tree, many techniques have been
eveloped [3–5], and 3-D region growing method has been
roven a very effective one, though the extraction accuracy
sing 3-D region growing is very sensitive to the threshold
alue that is used for controlling the region expansion. Mori
t al. proposed a method to determine the optimal threshold
5].

This method is to expand the airway region gradually by
ncreasing the threshold value until the segmented region leaks
nto the lung, and to regard the threshold value just prior to the
egion leak as the optimal one. The judgment of region leak is
ased simply on observing whether the volume increase of the
egmented airway region goes beyond a limitation (threshold
alue) during the repetition of the 3-D region growing process
refer to Fig. 5). This method is very effective for some ideal
ases such as that shown in Fig. 5(a). However, due to the influ-

nce of noise, motion artifacts or disease, the airway wall is col-
apsed or discontinuous at some branches shown on CT images.
hose discontinuities in the bronchus wall cause the airway

egion to merge into the lung slowly and prematurely during the
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Fig. 5. Threshold value decision of 3-D region growing process. (a) Case 1: Optimum Th. value is decided correctly. (b) Case 2: Optimum Th. value is decided
incorrectly. TA: Th. value of manual decision. TB: Th. value of automated decision. ( ) Leak region.
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egion growing process, and result in airway extraction failure
Fig. 5(b)).

We propose a new method for airway extraction and recog-
ition. This method, like Mori’s, also uses 3-D region grow-
ng as the basic process. The difference between our method
nd that of Mori is that: (l) we validate the regions by ref-
rence to the structure of airway trees (common anatomical
nowledge), which information is used as feedback to avoid or
liminate the influence of leak during the airway region extrac-
ion. (2) Instead of using one threshold value for extracting the
otal airway region, we analyze and segment the airway region
ased on a branch-by-branch basis, and decide the optimum
hreshold value for each branch individually and specifically.

he processing flow of our method (shown in Fig. 6) includes

wo main steps. We describe each of these steps in detail as
ollows.

w
c
h
f

.2.1. Step 1: Extracting the initial airway region
Based on the results of the initial region segmentation pro-

ess, we select the air region inside the human body (refer to
ig. 2(d)) in the first slice (nearest to the head) on the 3-D chest
T image as the seed points of the airway region. Then we
stimate the optimum threshold value using Mori’s method [5],
nd use it to extract the airway region by a branch-based 3-D
egion growing method [12]. Compared with the region grow-
ng method of Mori [5], this method can recognize the branch
oints during the region growing process and output the airway
egion into a binary tree structure by attaching to each branch a
nique label. We show each labeled branch in the airway tree in
different color in Fig. 6(a and b). By matching this labeled air-
ay tree with the normal anatomical bronchus tree structure, we

an identify the parent branch of the leak region, which always
as a lot of offshoots or sub-trees. In our process, we use the
ollowing rule to detect and delete the leak regions:
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Fig. 6. (a and b) Processing flow of airway

Next, we output the refined airway tree as the initial airway
egion, as shown in Fig. 6(a).

.2.2. Step 2: Refine the airway region by
ranch-by-branch basis processing

Due to the influence of leak regions in some sub-branches,
he region growing process based on single threshold value in
tep 1 has a limited performance for peripheral branch extrac-
ions. Here, we separate the airway region into branch units

ased on anatomical bronchus tree structure firstly, and then,
ach of the branch units is regarded as the root of a sub-
ree of bronchus. The region growing method as described in
tep 1 is used again to refine each sub-tree and extract periph-

3

i

xtraction and recognition (step 2 of Fig. 1).

ral branches which are not indicated in initial airway region
Fig. 6(a)).

Finally, we just retain the branch regions within the 12th
ode in depth of the airway tree structure as reliable branches
nd output it as shown in Fig. 6(b). As another result, we remove
he airway of the bronchus from the air region inside chest, and
egard the remaining air regions as the initial lung region for the
ext processing step.
.3. Lung region extraction

Many investigations for lung region segmentation from CT
mages have been reported [6–8]. Almost all of those reports use
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he air region inside the human chest to estimate the shape of
ung regions. However, how to separate the connection between
he mediastinum and the lung region without changing the shape
f the lung surface is a problem that has not yet been completely
olved. We proposed a processing procedure (shown in Fig. 7)
hat attempts to extract the lung region and preserve the shape
f lung surface as precisely as possible. As the first step, we
eparate the initial lung region (output of Section 3.2) into left
ung and right lung using the following algorithm.

Next, we extract the surfaces of the left and right lung regions

y a 3-D border following method and divide the respective lung
urfaces into facies diaphragmatica, facies costalis, and facies
edialis, as shown in Fig. 7(a). The facies diaphragmatica are the

Fig. 7. (a–c) Processing flow of lung region extraction (step 3 of Fig. 1).

s
s

ing and Graphics 30 (2006) 299–313 305

ung surfaces that lie immediately against the diaphragm and the
acies costalis are the lung surfaces that lie immediately adjacent
o the ribs and intercostals space of the thoracic wall. The facies
edialis are the lung surfaces that lie against the mediastinum

nteriorly and the vertebral column posteriorly and contain the
omma-shaped hilum of the lung through which structures, such
s blood vessels and bronchus, enter and leave. Our scheme
ses the curvature and normal vector in each voxel on the lung

urfaces for the lung surface division process by the following
even steps.

(1) The local lung surface for each voxel was mod-
eled with a second-degree polynomial on a
5 × 5 neighborhood and was optimized using
the least squares method.

(2) The normal vector V, mean curvature H, and
Gaussian curvature K for each voxel of lung
surfaces were calculated using the estimated
surface.

(3) The candidate voxel P of facies diaphragmat-
ica was restricted to the condition such that
[−Π/4 < direction of V on P < +Π/4] where the
longitudinal axis of the body was taken as zero
radian.

(4) The largest connected component of the can-
didates on the left/right lung surface was
determined to be the initial left/right facies
diaphragmatica and refined by a region grow-
ing method.

(5) The candidate voxel P of facies costalis was
restricted to the condition such that [H on
P < 0] and [K on P > 0] and [3-D distance from

P to the bone <3 mm].

(6) The largest connected component of the rest
lung surfaces on the left/right lung surface was
determined to be the candidate of facies medi-
alis.
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vessel regions belonging to each lobe region, and determine the
other voxels by searching the minimum distance to each lobar
representative voxel via the vessel tree. The details of this algo-
rithm are shown below.
06 X. Zhou et al. / Computerized Medical

(7) A Voronoi division based on the 3-D distances
to the candidates of facies medialis and facies
costalis was used to identify the finial surfaces
of facies medialis and facies costalis on the
left/right lung surface [13].

In order to close the lung hilum, we create an approximate
urface by smoothing the facies medialis using a binary morpho-
ogical operator, and then we identify the position of the lung
ilum and create a section surface of lung hilum (Fig. 7(b)) for
he right and left lung, respectively, by use of the following algo-
ithms [13].

Using this method, we can just close the lung hilum and pre-
erve the original lung shape (excepting the hilum) as precisely
s possible [13]. Finally, we fill the inside regions of closed lung
urfaces and output this area as lung regions (Fig. 7(c)).

.4. Pulmonary vessel extraction

The algorithm used for pulmonary vessel extraction is
imilar to the bronchus region extraction method described in
ection 3.2. We first select the human muscle regions inside the

ung region as the seed points for 3-D region growing (Fig. 1).
hen we use a processing flow (similar to the airway extraction

n Fig. 6) to extract the pulmonary vessels by two steps. First,
e extract the initial pulmonary vessels by 3-D region growing
ased on a single threshold value which is decided automatically
sing a similar process as shown in Fig. 6(step l), then, we divide
he pulmonary vessels into tree structures and refine each branch
f the pulmonary vessel trees based on a branch-by-branch anal-
sis. This process is similar to Fig. 6(step 2). Lastly, we separate
part of initial pulmonary vessels near to the surface of airway
f bronchus and regard it as the bronchial wall by the following
lgorithm.
ing and Graphics 30 (2006) 299–313

.5. Lung lobe decisions and inter-lobe fissure extractions

Inter-lobe fissures, thin membranes with a thickness of about
–2 mm, separate the lung region into different lung lobes. The
ssures are not truly visible on each CT image; they appear as a

hin surface pattern with a weak density. Because of the image
oise, motion artifacts of breathing, and occasional presence of
isease, in many cases (about 70% of patients), the inter-lobe
ssures cannot be observed completely on CT images [14,15].
ue to this fact, it is very difficult for a CAD system to extract

he inter-lobe fissure automatically solely on the basis of den-
ity on CT images. Here, we propose an anatomy-based method
o extract lung lobar regions and identify inter-lobe fissures

utomatically. The basic idea of this method is to recognize the
obar bronchus and vessels and use those structures to divide
he whole of the lung regions into five lung lobar regions first;
se the boundary between the different lung lobes to estimate the
nter-lobe fissure locations; and then make a precise extraction of
eal fissures by detecting the edges around the estimated fissure
ocations. The processing flow of this method includes three

ain steps, as shown in Fig. 8. The details of each step are as
ollows.

.5.1. Lobar vessel classifications
We classify the cumulative lung vessels into five lobar groups

Fig. 8(d)) based on the bronchial tree structure recognized
efore. By checking the connection of lung vessels to each lobar
ronchial wall, we can determine the representative voxels of
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.5.2. Dividing lung regions into five lung lobes
We have classified the bronchus and vessels into five lobar

roups by the above steps. Based on that information, we divide
he whole lung into five lobar regions using a Voronoi division
lgorithm. More specifically, we firstly set each lobar vessel and
ronchus group as the “skeleton” of the corresponding lung lobar
egion, and then measure the 3-D distances from the “skeleton”
f each lobar region to each voxel of the lung region using the
-D Euclidean distance transformation method [16]. Finally, we
lassify each voxel of the lung region into a specific lung lobe
hose “skeleton” is nearest to it.

.5.3. Inter-lobe fissure extractions
Using the extraction results of the five lobar regions, we define

he boundary surface between the different lobar regions as the
nitial locations of inter-lobe fissures (Fig. 8(f)).

Due to the accuracy of lung vessel and bronchus extractions,
he positioning of initial fissures may, in many cases, suffer a
mall shift in comparison to the real fissures. Here, we limit the
cope around the initial fissures and do a further extraction of
ssures by detecting the surface pattern based on density distri-
ution on the original CT images. More specifically, we expand
he initial fissures using a 3-D morphologic filter with a ball
tructure and generate a slab region with a thickness of 10 mm
round the initial fissures; use an 18-neighborhood Laplacian
lter (mask size: l.5 mm) to enhance the original CT image; and

hen extract the edge elements based on zero-crossing detection
ithin the generated slab regions. Lastly, we select a connected

omponent which has the biggest projection area on the sur-
ace of a corresponding initial fissure from of edge elements
nd adjust it to a smooth surface pattern by a morphological
perator. We regard these smooth surface patterns as the final
esults of inter-lobe fissures (Fig. 8(g)). At last, we use the inter-
obe fissures to re-separate lung regions into five lobar regions
gain by a 3-D connected components processing (Fig. 8(h)). If
he lung region re-separation is not successful, we decide that
he inter-lobe fissures are incomplete and regard the lung lobar
egions decided by the initial lung fissures as the final results.

. Results and discussion
We assessed the performance of our automated human chest
tructure recognition method using chest multi-slice CT images
rom 44 patients. Excluding the three cases which had serious

Fig. 8. (a–h) Processing flow of lung lobe and fissure extractions (step 5 of
Fig. 1).
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Fig. 9. A user interface for visual evaluation on accuracy of the segmentation
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esults (green) in CT images. “For interpretation of the references to color in
his figure legend, the reader is referred to the web version of the article”.

neumonia or pulmonary emphysema, the remaining patients
ad almost normal lung structures that could be confirmed by
hysicians from CT images.

Human tracings of target regions were used as the gold stan-
ard of evaluation of region extraction accuracy of a CAD system
rom a CT image. However, in the case of a high-resolution CT
mage that includes 400–633 slices, it is very time consuming
o draw the tracings slice-by-slice and difficult to maintain high
ccuracy of the human tracings in 3-D. Here, we developed a spe-
ial user interface for accuracy evaluation to reduce this burden
17]. This interface can show the segmentation regions semi-
ransparently on a CT image (Fig. 9). The human expert can use
his tool to give an evaluation intuitively and quickly by viewing
he segmentation results from 3-direction slice-by-slice and 3-D
hape of segmentation regions (Fig. 9). In our experiments, we
sed this interface to evaluate the accuracy of automatic extrac-
ion results of chest, fat, vessel, and lung regions. We selected
even patient cases and made a human sketch of body surface,
ung surface and lung fissures as the gold standard (the human
ketches were decided by one of the authors (Dr. T. Kiryu)
ho is a radiologist on chest diagnosis). We made a quanti-

ative evaluation by comparing the segmentation result with the
old standard. Two methods had been mainly used for accuracy
valuation.

(a) Coincidence degree had been used for mass regions evalu-
ation:

A ∩ M

Coincidence degree =

A ∪ M

A: mass region extracted automatically; M: mass region
extracted manually.

c
o
t
e

ing and Graphics 30 (2006) 299–313

b) Average shortest Euclidian distance (ASED) had been used
for surface pattern evaluation:

SED =
∑

i ∈ s1SED(i, s2)

V

1, s2: surface patterns; SED(i, s2): the shortest Euclidian dis-
ance from pixel i to a surface s2; V: area (voxel number) of
urface s1.

Beside of the ASED, we also defined SSED (standard devi-
tion (S.D.) of the shortest Euclidian distance for each pixel
n extracted surface to a target surface) and MSED (maxi-

um value of the shortest Euclidian distance for each pixel in
xtracted surface to a target surface) to measure the coincidence
etween two surface patterns.

We show a portion of the lung-structure segmentation results
5 successful cases in Fig. 10 and 3 cases of failure in Fig. 11) by
isplaying the principal sub-structures (airway tree of bronchus,
ung vessels, lung lobes, lung fissures) of the lung region in 3-

and 2 representative slices of CT images overlapped by the
xtracted inter-lobe fissures. Further detailed structures in each
esult image are shown in different colors for ease of identifica-
ion.

Our segmentation scheme using a sequential region-splitting
rocess to recognize the different organ and tissue regions
equentially and precisely based on the anatomical structure of
he human chest has been proved effective from our experimental
esults. We confirmed that our method could recognize, correctly
nd stably, the lung structure from 41 patient cases in which
he normal lung structure could be almost identified visually
n CT images. For the remaining patient cases (two cases with
eave pneumonia, one case with abnormal airway structure),
he anatomy lung structure could not be distinguished clearly
ven by an expert physician. In such cases, our method simply
topped the recognition process and output a warning message.
n the following section, we give detailed performance evalua-
ions for each processing step of our scheme.

.1. Initial region classification

We confirmed that our method shown in Fig. 2 could identify
he region of air and perform extraction of the human chest accu-
ately and stably for all (44) of the patients. We compared the
xtracted chest region to the manual sketch for 7 cases and con-
rmed the coincidence degrees of each case varied from 99.41

o 99.91% (the mean value was 99.57% and standard deviation
as 0.35%). Further, we measured the ASED for each voxel
n the chest surface to the manual sketch and found the val-
es varied around the mean value of 0.32 mm with a standard
eviation of 0.15 mm (Table 1). We verified the density thresh-
lding values (Fig. 12), which were decided automatically for
dapting the different patient cases by our method (Fig. 3), and

onfirmed that the selected threshold value was the optimum
ne for each patient case. From the above results, we confirmed
hat our thresholding value selection method is necessary and
ffective for adapting to differences among inputted CT images.
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Fig. 10. Segmentation results of lung structures. (a–e) Five patient cases.

Fig. 11. Segmentation results of lung structures. (a–c) Three patient cases. ( ) Misidentifications due to incomplete fissure in original CT images.
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Table 1
The accuracy evaluations for the segmentation results of chest region using
manual tracings

Case no. Accuracy of the chest region segmentation

C* (%) ASED (mm) SSED (mm) MSED (mm)

1 99.41 0.29 0.16 4.42
2 99.76 0.28 0.19 7.95
3 99.91 0.20 0.17 9.08
4 99.65 0.24 0.16 3.13
5 99.63 0.31 0.18 4.00
6 99.76 0.23 0.15 3.75
7 98.85 0.66 0.96 7.13

Mean 99.57 0.32 0.28 5.64

S.D. 0.35 0.15 0.30 2.36
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Table 2
The numbers of the extracted segmental bronchi in each lobar region

43 cases Number of bronchus

Right lung Left lung

Lobus
superior

Lobus
medius

Lobus
inferior

Lobus
superior

Lobus
inferior

Mean 20.9 8.8 16.7 22.6 18.8
S.D. 11.0 10.5 7.4 18.7 12.5
Maximum 67.0 56.0 40.0 108.0 72.0
Minimum 3.0 1.0 6.0 7.0 6.0
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Table 3
*: Coincidence degree between the segmentation results and the manual trac-
ng.

.2. Airway extraction and airway tree recognition

Our method identified the airway regions successfully for
ll (44) the patients, and recognized the anatomical tree struc-
ure from 98% (43/44) of patients successfully, as shown in
igs. 10 and 11, respectively. The tree structure recognition pro-
ess failed in one patient case because the airway of this patient
ad an abnormal tree structure; it differed quite a bit from the
tandard anatomical structure. We confirmed that the trachea
nd lobar bronchus were completely extracted and recognized
orrectly from 43 patients. Due to the limitation of image quality
nd patient’s personality, the situations of segmental branches
n CT images were varied largely in different cases. The num-
ers of segmental bronchi that were extracted in each lobar
egion are shown in Table 2. About 17.5 branches in the seg-
ental bronchial tree were extracted in each lobar region for

ach patient. The standard deviation of the extracted segmental
ranches was about 12. This result showed the approach of our
ethod (extraction → recognition → adjusting) could enhance

he flexibility for different cases and was effective to enhance
he reliability of extraction results.

.3. Lung region extraction
The basic policy of our method for lung region extraction is
o identify the air region within chest and use it to estimate lung

ig. 12. Threshold values decided automatically for different CT images.

T
u

C

1
2
3
4
5
6
7

M

S

urface. We found that this policy was effective for 95% (42/44)
atients. In the remaining two patient cases, the lung regions
ere filled by inflammation that appeared as high-density fibrous

egions. Although the air regions inside the lungs were extracted
uccessfully by our method, the information was insufficient to
stimate the lung surface precisely. For 42 patient cases, we con-
rmed that the lung regions from the left and right lung were

dentified and separated successfully. We evaluated the accuracy
f the lung region extraction by calculating ASED, SSED and
SED for each pixel on the lung surface (excepting lung hilum)

o the manual sketch using seven patient cases and confirmed the
ean value between extracted lung surface to the manual sketch
as 0.44 (mm) in case of left lung, and 0.62 (mm) in case of

ight lung (Table 3). Beside of the left lung region in cases 5
nd 6, which a nodule on the lung wall caused a big value of
SED, the maximum distance between extracted lung surface

nd manual sketch was about 4.5 mm in left lung and 8.9 mm in
ight lung (Table 3). Using the evaluation tool shown in Fig. 9,
e found that our method closed lung hilum successfully and
reserved the shape of the other lung surfaces precisely. It can
e considered that lung surface dividing and limiting the loca-
ion of lung hilum for smoothing are necessary for lung region
he accuracy evaluations for the segmentation results of lung region using man-
al tracings

ase no. Accuracy of the lung region segmentations

Right lung Left lung

ASED
(mm)

SSED
(mm)

MSED
(mm)

ASED
(mm)

SSED
(mm)

MSED
(mm)

0.63 0.36 2.80 0.32 0.20 6.16
0.63 0.41 8.71 0.54 2.71 19.20
0.72 0.28 3.42 0.34 0.25 8.22
0.65 0.29 3.95 0.49 0.37 10.16
0.69 0.31 2.80 0.42 0.56 96.25a

0.38 0.20 4.10 0.51 4.18 116.76a

0.68 0.41 5.69 0.44 0.27 6.76

ean 0.62 0.32 4.49 0.44 1.22 10.10

.D. 0.11 0.07 2.10 0.08 1.58 5.32

a The errors were caused by lung nodules on lung wall.
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Table 4
The accuracy evaluations for the segmentation results of lung lobes using manual
tracings

7 cases Coincident degree of lobar volume (%)

Right lung Left lung

Lobus superior Lobus medius Lobus superior

Mean 98.54 97.21 98.62 98.49 98.46
S.D. 0.69 0.87 0.67 0.30 0.50
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Table 6
The accuracy evaluations for the final segmentation results of lung fissures using
manual tracings

7 cases ASED (mm)

Right lung Left lung

Oblique fissure Horizontal fissure Oblique fissure

Mean 0.52 0.30 0.68
S.D. 0.23 0.08 0.29
M
M

a
(

4
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aximum 99.27 98.13 99.23 99.13 99.19
inimum 97.55 96.12 97.27 98.25 97.59

.4. Lung vessel extraction

Except in 2 patient cases with pneumonia, the lung ves-
el regions were identified correctly from the 42 patients
Figs. 10 and 11). However, some lesion regions (lung cancer,
nflammations, etc.) were misclassified as a part of the lung ves-
els. A further validation of vessel extraction results is necessary
nd should be incorporated into our method in the future.

.5. Lung lobe region extractions

For the 41 patients whose lung regions and airway of
ronchus were extracted and recognized correctly, our method
ivided the left and right lungs into 5 lobar regions success-
ully (Figs. 10 and 11). In order to test the performance of our
ethod, we tracked inter-lobe fissures slice-by-slice and sepa-

ated the lung region into five lobar regions manually from seven
atient cases whose inter-lobe fissures could be observed clearly
nd completely on CT images. We compared each automated
xtraction result of lobar regions with the manual segmenta-
ion results by measuring coincidence degree. The coincidence
egree for each lobar region was shown in Table 4. We confirmed
hat the results extracted automatically and the manual results
ere extremely consistent with a high coincidence degree about
8%. This indicates that our approach—“lung lobar region iden-
ification based on anatomy structure of the airway tree”—was
uccessful. We measured the ASED from approximated lobar

oundaries to the manual fissures, and find the ASEDs to each
ssure were about 1.8–2.8 mm (refer to Table 5). Due to this
act, we think, even in the cases of incomplete inter-lobe fissure
n original CT images, our method could provide a reason-

able 5
he accuracy evaluations for the initial segmentation results of lung fissures

boundary of the lung lobes) using manual tracings

cases ASED (mm)

Right lung Left lung

Oblique fissure Horizontal fissure Oblique fissure

ean 1.83 2.70 2.77
.D. 0.76 3.04 1.01
aximum 3.11 9.50 3.82
inimum 1.15 1.24 1.35
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aximum 1.00 0.41 1.01
inimum 0.32 0.20 0.31

bly approximate anatomical result of lung lobar identification
Fig. 11).

.6. Inter-lobe fissure extractions

Using the human tracings of inter-lobe fissures in the above
ection as a reference standard, we evaluated the accuracy of
ssure extractions by our method for seven patient cases. We
easured ASED from extracted fissures to the reference stan-

ard as the error of extraction. The ASED of each fissure, shown
n Table 6, confirmed that our method can extract inter-lobe fis-
ures precisely with an error of approximately 0.5 mm from the
eference tracings. We confirmed that our method could identify
nter-lobe fissures successfully from the CT images that have a
ormal lung structure and complete inter-lobe fissure as shown
n Fig. 10. For cases in which the fissure is incomplete on CT
mages (Fig. 11), our method simply regarded the approximated
obar boundaries as the inter-lobe fissures and issued a warning
f incompleteness.

The typical computation time of our scheme (Fig. 1) was
bout 105 min for one CT case using a computer (CPU: AMD
pteron (TM) Model 242), and the individual time for process-

ng steps 1–5 in Fig. 1 was 11, 40, 4, 10, and 40 min, respectively.
e are doing some works that can be expected to reduce the com-

utation time using a PC cluster based on the message passing
nterface (MPI) library.

Lung region segmentation based on CT values of air used in
his research was a well-known approach that has been reported
n many research works [6,7]. The threshold value used in Ref.
6] was optimized by minimizing the variety of the mean density
ifference between air and human tissue regions after gray-level
hresholding. This method has a similar effect to the [11] when
he density distributions of air and body regions are not over-
apped together. Lung contour smoothing has been introduced
n some research works to close the lung hilum based on binary
-D or 3-D morphology operations [18]. However, the binary
orphology operation such as big ball rolling process always

auses an excessive smoothing effect which deteriorates the
xtraction precision of lung surface. In order to solve this prob-
em, a method was proposed to indicate the approximate range

f lung hilum and close it using morphology operations [19].
owever, this method needs the anatomical structure of airway

ree to estimate the locations of lung hilums firstly. Our method
dividing lung surfaces, detecting the lung hilum locations, and
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nly smoothing the surface of lung hilum) can avoid accuracy
eteriorations caused by smoothing the entire lung surface, and
his process need not any other information for assistance except
f lung surface itself [13]. The junction between left and right
ungs after gray-level thresholding was also a problem in lung
egion segmentation. A popular solution was to separate left and
ight lungs and find the anterior and posterior junction using a
inary morphological dilation [18]. Instead of binary morpho-
ogical dilation, we used a 3-D watershed method to find the
unction lines and separate the left and right lung regions based
n gray-level information of lung regions. This method has been
roved more accurate than the method based on binary morpho-
ogical dilation.

The lung fissure identification and lobar extraction were
eported in Refs. [20–26]. An approximation method to deter-
ine the lung segments based on the anatomical bronchial tree

sing CT images was proposed by Refs. [20,21]. However, due
o the facts that the segmented bronchial tree (corresponding to
he sixth- or seventh-order bronchi) cannot be recognized sta-
ly without any leak even based on high-resolution CT images,
e found that the information of bronchial tree was not enough

or automated lobe segmentation from CT images [22]. On the
ther hand, another approach to extract lung fissure and lobe
sing the lung vessels was proposed by Refs. [23,24]. This
ethod was based on the hypothesis that the lung vessels do not

xist around the lung fissures locations. However, this hypoth-
sis was not always true in many cases; some improvements
f this research works added the information of bronchial tree
or fissure identification [25,26]. The basic idea of our method
or lung fissure and lobe extraction was based on anatomical
ronchial tree which was similar to Refs. [20,21], the differ-
nce was that we used the lung vessels running together with
he each lobar bronchial tree to improve the accuracy of fissure
ocation estimation and decided the lung fissures based on real
ray-scale information [27]. Atlas-based fissure identification
28] may be a new direction for lung lobe segmentation using
T images, however, high-precision registration the of anatom-

cal lung structure in CT images which is necessary not only for
tlas generation but also for atlas-based segmentation had not
e resolved completely till now.

The algorithms based on Hessian matrix analysis [29] proved
ery useful for vessel extraction. However, this algorithm needs
lot of the computation time. Our approach tries to extract the

ung vessels roughly by a region growing algorithm and improve
he accuracy by deleting the bronchial wall regions from it.
his method did not cost a lot of computation time, however,
epended on the accuracy of bronchial wall extractions.

. Conclusion

We have developed a full-automatic classification scheme to
ecognize lung structures from high-resolution chest CT images.
ur method divides the whole CT image into target organ
nd tissue regions sequentially, in a manner closely based on
heir anatomical relationships and statistical intensity distribu-
ion among different organ and tissue regions. The policy “region
xtraction → structure recognition → detail correction” is intro-

[

[

ing and Graphics 30 (2006) 299–313

uced as a basic rule of our processing flow, and the principal
arameters of each process are self-optimized automatically and
ynamically for purposes of adapting to different patient cases.
e applied our method to high-resolution CT images from 44

atients and confirmed that our classification scheme could cor-
ectly and stably provide stratified recognition results of lung
tructures for 41 patients and failed in 3 patient cases (2 cases had
erious pneumonias, 1 case had an abnormal tree structure of air-
ay due to the serious pulmonary emphysema). The recognition

esults of this research provided the possibility to make a further
nalysis or visualization of vessel, bronchus and other abnormal-
ty such as pulmonary emphysema in a lobe-by-lobe base which
s request by clinic medicine. In the future, we will attempt to
lassify the pulmonary vessels into artery and vein groups and
ecognize the anatomical structure of the mediastinum.

cknowledgements

The authors thank the members of Fujita’s Laboratory
nd the Virtual System Laboratory (VSL) of Gifu Univer-
ity for their collaboration. This research was supported in
art by research grants from the Collaborative Centre for
cademy/Industry/Government and VSL of Gifu University, in
art by the Ministry of Health, Labor, and Welfare under a Grant-
n-Aid for Cancer Research, and in part by the Ministry of Edu-
ation, Culture, Sports, Science and Technology under a Grant-
n-Aid for Scientific Research from the Japanese Government.

eferences

[1] http://www.gemedical.co.jp/rad/ct/lightspeed ultral6 tech.html.
[2] http://www.toshiba-medical.co.jp/tmd/products/ct/aquilion/sixteen/index.

html.
[3] Aykac D, Hoffman EA, Mclennan G, Reinhardt JM. Segmentation and

analysis of the human airway tree from three-dimensional X-ray CT images.
IEEE Trans Med Imag 2003;22(8):940–50.

[4] Mori K, Hasegawa J, Suenaga Y, Toriwaki J. Automated anatomical label-
ing of the bronchial branch and its application to the virtual bronchoscopy
system. IEEE Trans Med Imag 2000;19(2):103–14.

[5] Mori K, Hasegawa J, Toriwaki J, Anno H, Katada K. Automated extraction
of bronchus area from three dimensional X-ray CT images. IEICE Tech
Rep 1994;142.

[6] Hu S, Hoffman EA, Reinhardt JM. Automatic lung segmentation for accu-
rate quantitation of volumetric X-ray CT images. IEEE Trans Med Imag
2001;20(6):490–8.

[7] Leader JK, Zheng B, Rogers RM, Sciurba FC, Perez A, Chapman BE, et
al. Automated lung segmentation in X-ray computed tomography. Acad
Radiol 2003;10(11):1224–36.

[8] Kitasaka T, Mori K, Hasegawa J, Toriwaki J. Automated extraction of the
lung area from 3-D chest X-ray CT images based upon the 3-D shape
model deformation. In: Proceedings of the 13th International congress and
exhibition on computer aided radiology and surgery. 1999. p. 194–8.

[9] Kitasaka T, Mori K, Hasegawa J, Toriwaki J, Katada K. A method for
automated extraction of aorta and pulmonary artery using line models from
3-D chest X-ray CT images with contrast medium. In: Proceedings of 16th
conference on pattern recognition. 2002. p. III-273–6.

10] http://medical.nema.org/.

11] Otsu N. A threshold selection method from gray-level histogram. IEEE

Trans SMC 1979;SMC-9(1):62–6.
12] Sekiguchi H, Sugimoto N, Eiho S, Hanakawa T, Urayama S. A blood vessel

segmentation for head MRA using branch-based region-growing. IEICE
Trans Info Sys DII 2004;J87(1):126–33.



Imag

[

[
[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

X
i
t
t
S
i

T
F
I
s
U
c

T
G
c
S
p

H
G
N
U
D
G
s

R
f
P
H
f
p

T
v
(
o

X. Zhou et al. / Computerized Medical

13] Murata N, Zhou X, Hara T, Fujita H, Yokoyama R, Kiryu T, et al. Automated
extraction of hilus pulmonis from multi-slice chest CT image, IEICE Tech
Rep MI2002-101; 2002. p. 31–5 [in Japanese].

14] Medlar EM. Variations in interlobar fissure. AJR 1947;57:723–5.
15] Raasch BN, Carsky EW, Lane EJ, O’Callaghan JP, Heitzman ER. Radio-

graphic anatomy of the interlobar fissure: a study of 100 specimens. AJR
1982;138:1043–9.

16] Saito T, Toriwaki J. Euclidean distance transformation for three
dimensional digital images. Trans IEICE 1993;J76-D-II(3):445–53
[in Japanese].

17] Zhou X, Hara T, Fujita H, Ida Y, Katada K, Matsumoto K. Extraction and
recognition of the thoracic organs based on 3-D CT images and its appli-
cation. In: Proceedings of the 16th international congress and exhibition of
computer assisted radiology and surgery 2002. 2002. p. 776–81.

18] Brown MS, McNitt-Gray MF, Mankovich NJ, Goldin JG, Hiller J, Wilson
LS, et al. Method for segmenting chest CT image data using an anatom-
ical model: preliminary results. IEEE Trans Med Imag 1997;16:828–
39.

19] Ukil S, Reinhardt JM. Smoothing lung segmentation surface in 3D X-
ray CT images using anatomical guidance. Proc SPIE Med Imag 2004
2004;5370:1066–75.

20] Krass S, Selle D, Boehm D, Jend H-H, Kriete A, Rau W, et al. A method for
the determination of bronchopulmonary segments based on HRCT data. In:
Proceedings of the 14th international congress and exhibition of computer
assisted radiology and surgery, 2000. 2000. p. 584–9.

21] http://www.mevis.de/.
22] Hayashi T, Zhou X, Hara T, Fujita H, Yokoyama R, Kiryu T, et al. Classifi-

cation of lung lobes based on bronchus from chest multi-slice CT images.
Trans IEICE 2003;J87-D-II(1):134–45 [in Japanese].

23] Mukaibo T, Kawata Y, Niki N, Ohmatsu H, Kakinuma R, Kanekp M, et al.
Classification of lung area using multidetector-row CT images. Proc SPIE
Med Imag 2002 2002;3(22):1292–300.

24] Kuhnigk J, Hahn HK, Hindennach M, Dicken V, Krass S, Peitgen H. Lung
lobe segmentation by anatomy-guided 3D watershed transform. Proc SPIE
Med Imag 2003 2003;5032:1482–90.

25] Saita S, Kubo M, Kawata Y, Niki N, Ohmatsu H, Moriyama N. An extrac-
tion algorithm of pulmonary fissures from low-dose multi-slice CT image.
Trans IEICE 2003;J87-D-II(1):357–60 [in Japanese].

26] Saita S, Yasutomo M, Kubo M, Kawata Y, Niki N, Eguchi K, et al. An
extraction algorithm of pulmonary fissures from multi-slice CT image.
Proc SPIE Med Imag 2004 2004;5370:1590–7.

27] Zhou X, Hayashi T, Hara T, Fujita H, Yokoyama R, Kiryu T, et al. Automatic

recognition of lung lobes and fissures from multislice CT images. Proc SPIE
Med Imag 2004 2004;5370:1629–33.

28] Zhang L, Hoffman EA, Reinhardt JM. Atlas-driven lung lobe segmen-
tation in volumetric X-ray CT images. Proc SPIE Med Imag 2003
2003;5031:308–19.

H
H
t
a

ing and Graphics 30 (2006) 299–313 313

29] Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, et
al. Three-dimensional multi-scale line filter for segmentation and visu-
alization of curvilinear structures in medical images. Med Image Anal
1998;2(2):143–68.

iangrong Zhou received the MS and PhD degree in information engineer-
ng from Nagoya University, Japan in 1997 and 2000, respectively. From 2000
o 2002, he continued his research in medical image processing as a postdoc-
oral researcher at Gifu University, and currently, he is an instructor of Graduate
chool of Medicine, Gifu University, Japan. His research interests include med-

cal image analysis, medical image visualization and pattern recognition.

atsuro Hayashi received the BS degree in Department of Information Science,
aculty of Engineering in 2003 and MS degree in Department of Intelligent
mage Information Graduate School of Medicine in 2005 from Gifu Univer-
ity. Currently, he is a PhD candidate in Graduate School of Medicine of Gifu
niversity, Japan. His research interests include medical image processing and

omputer-aided diagnosis.

akeshi Hara received the MS and PhD degrees in electrical engineering from
ifu University, Japan, in 1994 and 2000, respectively. He is currently an asso-

iate professor in the Department of Intelligent Image Information, Graduate
chool of Medicine, Gifu University, Japan. His research interests include com-
uter network, medical image processing and pattern recognition.

iroshi Fujita received the BS and MS degrees in electrical engineering from
ifu University, Japan, in 1976 and 1978, respectively, and PhD degree from
agoya University in 1983. He was a research associate at University of Chicago,
SA, from 1983 to 1986. He is currently a Chairman and a professor in the
epartment of Intelligent Image Information, Graduate School of Medicine,
ifu University, Japan. His research interests include computer-aided diagnosis

ystem, image analysis and processing, and image evaluation in medicine.

yujiro Yokoyama received the BS and MS degree in electrical engineering
rom Gifu University, Japan, in 2000 and 2002, respectively. Currently, he is a
hD candidate in Graduate School of Medicine from Gifu University, Japan.
e is also a radiological technologist and working in Gifu University Hospital

rom 1976 till now. His research interests include medical image processing and
attern recognition.

akuji Kiryu received the PhD degree at Gifu University in 2001. He served as a
isiting fellow at Department of Radiology, Armed Forced Institute of Pathology
AFIP) in 2003. He has been appointed to the assistant professor of Department
f Radiology at Gifu University School of Medicine since 2001.
iroaki Hoshi received the PhD degree at Miyazaki Medical School in 1987.
e served as a visiting scholar at the Montreal Neurological Institute from 1991

o 1992. He has been appointed to the Chairmanship of Department of Radiology
t Gifu University School of Medicine since 1995.


	Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images
	Introduction
	Lung structure
	Method and materials
	Initial region segmentation of chest CT images
	Preprocessing of CT image
	Threshold value selection
	Gray-level thresholding
	Connected component processing
	Surface detection and region filling
	Region subtraction

	Trachea and bronchus extraction and bronchial tree recognition
	Step 1: Extracting the initial airway region
	Step 2: Refine the airway region by branch-by-branch basis processing

	Lung region extraction
	Pulmonary vessel extraction
	Lung lobe decisions and inter-lobe fissure extractions
	Lobar vessel classifications
	Dividing lung regions into five lung lobes
	Inter-lobe fissure extractions


	Results and discussion
	Initial region classification
	Airway extraction and airway tree recognition
	Lung region extraction
	Lung vessel extraction
	Lung lobe region extractions
	Inter-lobe fissure extractions

	Conclusion
	Acknowledgements
	References


