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ABSTRACT 

Magnetic resonance angiography (MRA) is routinely employed in the diagnosis of cerebrovascular disease. Unruptured 
aneurysms and arterial occlusions can be detected in examinations using MRA. This paper describes a computerized 
detection method of arterial occlusion in MRA studies. Our database consists of 100 MRA studies, including 85 normal 
cases and 15 abnormal cases with arterial occlusion. Detection of abnormality is based on comparison with a reference 
(normal) MRA study with all the vessel known. Vessel regions in a 3D target MRA study is first segmented by using 
thresholding and region growing techniques. Image registration is then performed so as to maximize the overlapping of 
the vessel regions in the target image and the reference image. The segmented vessel regions are then classified into 
eight arteries based on comparison of the target image and the reference image. Relative lengths of the eight arteries are 
used as eight features in classifying the normal and arterial occlusion cases. Classifier based on the distance of a case 
from the center of distribution of normal cases is employed for distinguishing between normal cases and abnormal cases. 
The sensitivity and specificity for the detection of abnormal cases with arterial occlusion is 80.0% (12/15) and 95.3% 
(81/85), respectively. The potential of our proposed method in detecting arterial occlusion is demonstrated. 
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1. INTRODUCTION 
Cerebrovascular disease is the third cause of death in Japan [1]. The prevention of such disease has been receiving great 
attentions. Magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) are very useful for the early 
detection of cerebral and cerebrovascular diseases and are widely used in a health check system named Brain Dock in 
Japan. Asymptomatic lacunar infarct, unruptured aneurysm, and arterial occlusion are often detected in the examination 
with MRI and MRA studies. Therefore, we have been developed computer-aided diagnosis (CAD) schemes for detection 
of these diseases in brain MR images [2-4] in order to assist radiologists’ diagnosis as a “second opinion” in the Brain 
Dock.  

The presence of asymptomatic lacunar infarcts increases the risk of serious cerebral infarction. Thus, it is important 
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Fig. 1 Target image and reference image. (a) A MIP image of Target image. The target image was changed to register the 
reference image. (b) A MIP image of the Reference image. (c) The eight pre-labelled arteries showed on the reference 
image in (b).  

to detect lacunar infarcts in MRI images. However, it is hard for radiologists and/or neurosurgeons to identify lacunar 
infarcts in MRI images because of the difficulty for distinguishing between lacunar infarcts and normal tissues such as 
Virchow-Robin spaces. Our previous study on CAD scheme for detection of lacunar infarcts in T1- and T2- weighted 
images has been reported [2]. The detection of unruptured aneurysms in MRA studies is also an important task for 
radiologists because the rupture of aneurysms is the major cause of subarachnoid haemorrhage (SAH). However, it is 
difficult to detect small aneurysms in MRA studies because of the overlapping of aneurysms and adjacent vessels on 
maximum intensity projection (MIP) image. A number of CAD schemes for detection of aneurysms in MRA studies 
have been proposed [3-7]. These studies showed that CAD can improve neuroradiologists and general radiologists in 
detecting intracranial aneurysms with MR angiography [8]. Although some studies have reported on CAD schemes for 
detection of lacunar infarcts and aneurysms, there have been no reports on the detection of arterial occlusion in MRA 
studies. 

In facilitating the radiologists in detecting small aneurysms, we developed a SelMIP image as a new viewing 
technique in our CAD scheme [4]. The technique takes on an approach in making a new type of MIP image with 
interested vessel regions only by manually selecting a desired cerebral artery from a list. By using our new viewing 
technique, the selected vessel region can be observed from various directions, and small aneurysms would be easy to 
detect. In this technique, we developed a new method for automated labeling of eight arteries in MRA studies. By using 
this method, we can calculate the length of eight arteries. The length of vessel with arterial occlusion is short in 
comparison with the normal vessel. Thus, we can distinguish between normal cases and abnormal case with arterial 
occlusion by using the lengths of arteries as features. This paper describes a CAD scheme for detection of arterial 
occlusion in MRA studies based on the relative length of eight arteries.  

2. MATERIAL 
A database consists of 100 MRA studies, including 85 normal and 15 abnormal with arterial occlusion, was collected. 
Sixteen of the MRA studies were acquired on a 1.5 T magnetic image scanner (a Signa Excite Twin Speed 1.5T; GE 
Medical System) at the Gifu University Hospital (Gifu, Japan). Each of these MRA studies includes 50 to 140 slice 
images. The axial slice images have a fixed size of 256×256 pixels and the size of the pixels ranges from 0.625 mm to 
0.78 mm.  The thickness of each slice is in the range of 0.5 mm to 1.2 mm. The remaining 84 MRA studies were 
acquired on a 1.5 T magnetic image scanner (Symphony; SIMENS) at the Gero Hot Springs Hospital (Gero, Japan). 
Each MRA study includes 72 to 80 slice images. The axial slice images have a size of either 256×192 or 256×176 pixels. 
Despite the slight variation in the image size, the axial slice images in all 84 cases have the same pixel size and slice 
thickness of 0.7mm and 1mm, respectively. In addition, a reference (normal) MRA study was also acquired on the above 
mentioned magnetic image scanner at the Gifu University Hospital using the same image acquisition parameters. All 100 
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studies and the reference study were obtained by use of a 3D time-of-flight technique. The acquired MRA data were 
subsequently converted to isotropic volume data by using linear interpolation. The size of the converted 3D volume data 
is 400×400×200  voxels, whereas the size of each voxel is 0.5×0.5×0.5mm3. The isotropic volume data were employed 
in all experimental work in this study. 

3. METHODOLOGY 
3.1 Overall scheme for automated detection of arterial occlusion 

Our scheme for automated detection of arterial occlusion consists of two parts, i.e., (1): classification of eight arteries, 
and (2): detection of arterial occlusion based on relative lengths of eight arteries. For the classification of arteries, the 3D 
reference image was used as a reference for the locations of eight arteries to be segmented in all MRA studies. The eight 
cerebral arteries were pre-labeled in the 3D reference image. They are the anterior cerebral artery (ACA), right middle 
cerebral artery (MCA), left middle cerebral artery, right internal carotid artery (ICA), left internal carotid artery, right 
posterior cerebral artery (PCA), left posterior cerebral artery, and basilar artery (BA). Image registration was performed 
on the 3D reference image and an image to be classified, referred to as a target image, with the former kept unchanged. 
Fig.1 shows a target image and a reference image. Segmentation of the vessel regions was subsequently performed by 
using the thresholding and region growing techniques. The segmented vessel regions in the target image were then 
shifted to align with the reference image by using a global matching procedure and rigid transformation. Recognition of 
each of the cerebral arteries was based on the Euclidean distance measured between a labeled artery in the reference 
image and the segmented vessel pixels in the target image. For the detection of arterial occlusion, the lengths of the eight 
arteries in the classified vessel regions were calculated. A classifier using the relative lengths of the arteries as features 
was employed in distinguishing between normal case and abnormal case with arterial occlusion. 
 
3.2 Segmentation of vessel region 

For the segmentation of the vessel regions in the target image, a linear gray-level transform was applied to the 3-
dimensional MRA image so that the minimum voxel value became zero, and voxels with values above the 99% margin 
depicted in a cumulative histogram were assigned to a maximum value of 1024. After the linear gray-level 
transformation, vessel regions were segmented from the background by using the gray-level thresholding method with a 
threshold level of 700, which was selected empirically. Using this method, the regions of large vessels were segmented 
successfully. However, it is difficult to segment small vessels using this method because the voxel values in small vessel 
regions were low. A region growing technique was subsequently applied to segment the small vessel regions. The 
segmented large vessel regions were used as “seed” points and neighboring voxels with values greater than 500 were 
appended to the seed points.  

 

3.3 Global matching  

As the locations of the corresponding vessel regions in the target image and the reference image are likely to be different 
due to variation in patient positioning, registration of the corresponding vessel regions is necessary. Global matching was 
used in the initial image registration. In the global matching procedure, the translation vector was defined so as to 
maximize the overlapping of the vessel regions in the target image and the reference image. By using the global 
matching technique, the corresponding vessel regions in the two images were brought close to each other.  

 

3.4 Corresponding control points 

After the global matching procedure, the rigid transformation [9] was used to achieve a more accurate matching between 
the target image and the reference image. A number of control points were pre-determined in the reference image and the 
template matching method was used in determine the locations of the corresponding control points in the target image. In 
the template matching procedure, the normalized cross-correlation value, C , was used as a similarity measure. The 
normalized cross-correlation value, C , between the template A , containing a pre-determined feature point on the 
reference image, and a region B , containing a candidate corresponding feature point on the target image is given by 
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Fig. 2 Corresponding control points for the rigid transformation. (a) The center points of the 12 templates (black dots) projected 
onto the MIP image of the reference MRA study. (b) Corresponding points (black dots) in the MIP image of the target MRA 
study was found using the template matching method. Square boxes indicate the search areas for individual control points. 

 { }{ }∑∑∑
= = =

−−
=

K

k

J

j

I

i BA

bkjiBakjiA
IJK

C
1 1 1

),,(),,(1
σσ

 (1) 

where 

 ∑∑∑
= = =

=
K

k

J

j

I

i

kjiA
IJK

a
1 1 1

),,(1 , (2) 

 ∑∑∑
= = =

=
K

k

J

j

I

i

kjiB
IJK

b
1 1 1

),,(1 , (3) 

 
IJK

akjiAK

k

J

j

I

i
A

2
1 1 1

)),,((∑ ∑ ∑= = =
−

=σ , (4) 

 
IJK

bkjiBK

k

J

j

I

i
B

2
1 1 1

)),,((∑ ∑ ∑= = =
−

=σ . (5) 

The size of the template KJI ××  was set to be 212121 ×× . The normalized cross-correlation value indicates the 
resemblance between the reference and the template. If the images A   and  B  are identical, C  will take on the value 1.0. 
Twelve templates were located manually in the cerebral region of the reference image. Fig.2 (a) shows the center points 
of the twelve templates in black dots. The search region associates with each template in the target image was of size 

414141 ×× . A set of coordinates of the corresponding points between the reference and the target image was determined 
by finding the largest cross-correlation value. Fig.2 (b) shows the twelve corresponding points found in the target image 
using the template matching method. 

3.5 Rigid transformation of the target image 

By using a set of corresponding control points determined by the template matching method, the translation and rotation 
vectors, T  and R , between the two images for the rigid transformation were determined. Let P and p  represent the 
corresponding points in the reference and the target images, respectively. Assuming the coordinates of the corresponding 
points in the images after global matching are ( ) ( ){ }12,,1:,,,,, K=== iZYXPzyxp iiiiiiii

, the relation between the 
corresponding points in the images can be written as  

 TRpP ii += . (6) 
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Fig.3 Relative lengths of the eight arteries obtained from three normal cases and an abnormal case with arterial occlusion. 

The translation vector T  and the rotation vector R  can be determined by minimizing 
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An efficient algorithm has proposed for determining T  and R  [10]. In this algorithm, the rotation matrix is obtained first 
by minimizing 
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where PPQ ii −= , ppq ii −= , and P and p are the centers of gravity of the control points in the reference and target 
image, respectively. Then, knowing the rotation matrix, the translation vector T  is determined from 

 RpPT −= . (9) 

For calculating the closest corresponding point pairs, the iterative closest point (ICP) algorithm [11, 12] was used. The 
ICP algorithm has two iterative stages. In the first stage, the set of corresponding points was transformed by using the 
rigid transformation in Eq. (6). In the second stage, the closest corresponding point pairs were identified once again for 
the next rigid transformation. The algorithm iterates until the change in mean square error between iterations fell below a 
defined threshold. 

 

3.6 Classification of cerebral arteries 

After the rigid transformation, all voxles in the segmented vessel regions of the target image were classified into eight 
cerebral arteries. Classification was based on the Euclidean distance between a voxel ),,( zyxv  in the target image and a 
voxel { }8,,1),,,( K=izyxa iiii  in the labeled eight vessel regions in the reference image, i.e., 
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Fig. 4  Histograms of distance for distinction between normal cases and abnormal cases. (a) Chessboard distance. (b) City Block 
distance. 

The classification result yielding the minimum Euclidean distance was considered to be the best initial result. A few 
small regions may not be classified correctly at this stage because of the slight deviation in vessels lengths and locations 
in individual cases. To rectify the potential miss classification, the label of the largest component in each of the eight 
labels were kept unchanged, whereas the rest of the regions were re-labelled based on their distances from the above 
eight labeled components. 

3.7 Detection of arterial occlusion based on relative length of arteries 

   In order to eliminate the effect of the thickness of vessels, 3D thinning transformation [13, 14] was applied to the 
labeled vessel regions. The absolute lengths of the eight arteries were obtained by counting the total number of labeled 
voxels. The lengths of the eight arteries were found to be different in different MRA studies. However, the relative 
lengths of the eight arteries were similar among normal cases. The relative length of an artery, iRL , is defined as 

TLLRL ii /=  8,,1L=i ,     (11) 

where Li is the length of one of the i th labeled arteries. TL  is the total length of the eight labeled arteries. Fig. 3 shows 
the relative lengths of the eight arteries obtained from three normal cases and an abnormal case with arterial occlusion. 
As shown in the figure, the relative lengths of the eight arteries obtained from the normal cases are similar. However, the 
relative lengths of the eight arteries obtained from the abnormal case are quite different from those obtained from the 
normal cases because the length of artery with occlusion is shortened. In building the classification in detecting arterial 
occlusion the relative lengths of the eight arteries are used as eight features. The features were then normalized by using 
the average values and the standard deviations of the eight features obtained from the normal cases. In the feature space, 
the distribution of eight features for normal cases was centered around the origin, whereas the distribution of eight 
features for abnormal cases was generally shifted from the origin. The distance from the origin indicates the likelihood of 
abnormality. A classifier based on the distance of a case from the origin was employed for the detection of abnormal 
cases with arterial occlusion. 

  In order to calculate the distance from the origin, three types of distance were investigated, i.e., Euclidean distance, 
Chessboard distance, and City Block distance [15]. The Euclidean distance, eD , is known from classical geometry and 
the distance between two points with co-ordinates ),,( kji  and ),,( nml  is defined as 
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Fig. 5 ROC curves for distinction between normal cases and abnormal cases with arterial occlusion by using the City Block 
distance, Euclidean distance, and Chessboard distance, respectively.   

222 )()()()],,(),,,[( nkmjlinmlkjiDe −+−+−= .    (12) 

The Chessboard distance, D8, is equal to the number of moves of the king on the chessboard from one part to another, 
which is given as 

|}||,||,max{|)],,(),,,[(8 nkmjlinmlkjiD −−−= .    (13) 

The pixels with D8 = 1 are the 8-neighbors of the point located at ),,( kji . The City Block distance, D4, is defined as 

||||||)],,(),,,[(4 nkmjlinmlkjiD −+−+−= .    (14) 

The name ‘City Block’ was coined because of the analogy with the distance between two locations in a city with a 
rectangular grid of streets and closed blocks of houses. The pixels with D4 = 1 are the 4-neighbors of ),,( kji .  

4. RESULTS AND DISCUSSIONS 
The proposed method was evaluated by applying to 100 MRA studies, consisting of 85 normal cases and 15 abnormal 
cases with arterial occlusion. Vessel regions in MRA images were first segmented. The segmented vessel regions were 
then classified into eight arteries. The relative lengths of the eight arteries were determined and were used in 
distinguishing normal cases and abnormal cases with arterial occlusion. The features were normalized by using the 
average values and the standard deviations of the eight features obtained from the normal cases. Finally, a case was 
classified as normal or abnormal based on the distance measure of the case from the origin in the feature space. Fig. 4 
shows histograms obtained from the normal cases and the abnormal cases using the Chessboard distance measure and the 
City Block distance measure, respectively. When using the Chessboard distance, discrimination between the normal 
cases and the abnormal cases is difficult because the distribution of the normal cases overlapped with that of the 
abnormal cases. However, in the case of the City Block distance, some abnormal cases could be clearly distinguished 
from the normal cases.  

To evaluate the performance of our CAD scheme using the Chessboard distance, the Euclidean distance, and the City 
Block distance, ROC analysis was used [16, 17]. The distances obtained from the normal cases and the abnormal cases 
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were used as decision scores in the ROC analysis. Binormal distributions were fitted to the scores by use of maximum-
likelihood estimation [17]. The ROC curve was obtained by changing the threshold value in the distribution of the 
distances obtained from output value of CAD scheme. Fig. 5 shows the ROC curves obtained from CAD schemes using 
the Chessboard distance, the Euclidean distance, and the City Block distance, respectively. The AUC values (area under 
the ROC curve) for Chessboard distance, Euclidean distance and City Block distance were 0.765, 0.854, and 0.895, 
respectively. The results indicate that the CAD scheme based on City Block distance achieved the best performance. As 
the result, with the CAD scheme based on City Block distance, the sensitivity and specificity for the detection of 
abnormal cases with arterial occlusion were 80.0% (12/15) and 95.3% (81/85), respectively.  

5. CONCLUSION 
We developed a computerized method for detection of abnormal cases with arterial occlusions. The sensitivity and 
specificity for distinction between normal cases and abnormal cases with arterial occlusions were 80.0% (12/15) and 
95.3% (81/85) with AUC of 0.895 under the ROC curve. Therefore, our computerized method might be useful for 
automatic detection of abnormal cases with arterial occlusion in MRA studies. 
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