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ABSTRACT 
 
This paper describes a method for detecting hemorrhages and exudates in ocular fundus images. The detection of 
hemorrhages and exudates is important in order to diagnose diabetic retinopathy. Diabetic retinopathy is one of the most 
significant factors contributing to blindness, and early detection and treatment are important. In this study, hemorrhages 
and exudates were automatically detected in fundus images without using fluorescein angiograms. Subsequently, the 
blood vessel regions incorrectly detected as hemorrhages were eliminated by first examining the structure of the blood 
vessels and then evaluating the length-to-width ratio. Finally, the false positives were eliminated by checking the 
following features extracted from candidate images: the number of pixels, contrast, 13 features calculated from the co-
occurrence matrix, two features based on gray-level difference statistics, and a feature calculated from the extrema 
method. The sensitivity of detecting hemorrhages in the fundus images was 85% and that of detecting exudates was 
77%. Our fully automated scheme could accurately detect hemorrhages and exudates. 
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1. INTRODUCTION 
 

The number of patients with adult diseases such as diabetes and hypertension is currently increasing in Japan. To 
prevent or detect these diseases at early stages, ophthalmologists rely on examining the fundus images obtained from 
over forty-years-old patients aged over 40 years during total health examinations or mass screenings. Diabetic 
retinopathy is a complication associated with diabetes, and there is a high probability that diabetic patients will develop 
this condition within 10 years from the onset of diabetes. Furthermore, diabetic retinopathy is the biggest cause of 
blindness. In Japan, there are approximately 7.4 million patients with diabetes and approximately 16.2 million patients 
who may have diabetes [1]. Approximately 40% of diabetic patients are thought to suffer from diabetic retinopathy. 
This disease can be prevented from developing into blindness if it is treated at an early stage. However, approximately 
3,000 people are recorded to have lost their vision after the onset of diabetic retinopathy. The fundus photographs or 
images obtained by the fundus camera are used to diagnose diabetic retinopathy. Japanese ophthalmologists usually 
examine the presence of hemorrhages and exudates in order to diagnose diabetic retinopathy. Here, we use the term 
“hemorrhages” to include hemorrhages, microaneurysms, and neovascularizations and the term “exudates” to include 
both hard and soft exudates. 

Recently, many studies on the use of fundus images in detecting diabetic retinopathy have been reported [2–9]. 
Niemeijer et al. proposed a method for detecting microaneurysms in fluorescein angiograms [2–4]. Their method 
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comprised two steps. Firstly, microaneurysms were detected by using a morphological filter. The false positives were 
then eliminated by analyzing the features. Serrano et al. proposed a method for detecting microaneurysms by the region 
growing technique in order to analyze fluorescein angiograms [5]. Generally, the methods to detect microaneurysms use 
fundus images enhanced by contrast medium. 

The contrast observed in an image of microaneurysm is very low; therefore, ophthalmologists often detect 
microaneurysms by using fluorescein angiograms. However, it is difficult to use fluorescein as a contrast medium for 
diagnosing all the medical examinees subjected to mass screening; therefore, we aim to develop an automatic system for 
detecting hemorrhages and exudates in the fundus images without using fluorescein angiograms. 

Walter et al. presented a method for the detection of exudates [6]. Their method uses a morphological filter and 
watershed transformation. Usher et al. presented a method for detecting hemorrhages, microaneurysms, and exudates [7, 
8]. The region growing method used by them segmented the abnormal and retinal regions. Nagayoshi et al. presented a 
method that included two additional processes to this method [9]. One of these was the normalization of color pixel 
values, and the other was the use of color pixel values for blood vessels. Moreover, the previous method had the 
drawback of a long operation time of approximately 43 s per image [9]. In this study, we propose a method for detecting 
the abnormalities faster than the previous methods. 
 

2. METHODS 
 
2.1 Overall scheme 

The flowchart of our overall detection scheme, including the steps developed by us, is shown in Fig.1. It consists of 
the following eight stages: (1) image digitization, (2) pre-processing, (3) extraction of optic nerve head, (4) detection of 
hemorrhage candidates, (5) elimination of false positives in blood vessels, (6) elimination of funicular shaped false 
positives, (7) detection of exudates candidates, and (8) elimination of false positives by feature analysis. Further details 
are described as follows. 
 

Image digitization

Pre-processing

Extraction of optic nerve head

Detection of hemorrhages Detection of exudates

Elimination of false positives
in blood vessels

Elimination of false positives by 
feature analysis

Elimination of funicular shapes

 
 

Figure 1 Flowchart for detecting hemorrhages and exudates in fundus images. 
 
 
2.2 Image digitization and pre-processing of fundus images 

We used the analog fundus photographs (45 or 50 degree field) captured on 35-mm positive films, as shown in Fig. 2 
(a). The fundus images were digitized by an EPSON ES2000, a flatbed-type scanner with a transmissive unit. The 
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(a)                                 (b)                                  (c) 
 

 
(d)                                 (e)                                 (f) 

 

 
(g)                                 (h)                                (i) 

  
 

Figure 2 Illustration of the hemorrhage detection processes. (a) Input image. (b) Detected optic nerve head. (c) 
Roughly detected hemorrhages and blood vessels. (d) In detail detected hemorrhages and blood vessels. (e) 
Combination of (c) and (d). (f) Candidates connecting blood vessels and candidate with large areas were 
eliminated. (g) Centerlines of blood vessels were detected by a thinning technique. (h) False positives on the 
blood vessels were eliminated. (i) Final image of hemorrhage detection. 

 

digitized 24-bit color images were represented by an array of 1,600 × 1,600 pixels in the bitmap format. Subsequently, 
the scale of the matrix was first reduced to the VGA size (width 640 pixels) by obtaining detailed subsamples from the 
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original image data to improve processing efficiency. 
Next, the color images were converted to grayscale ones by selecting only the green component, thus achieving a 

clearer contrast as compared to the original ones, which include all the color components. The hemorrhages and 
exudates were then detected in these images. Finally, the brightness of the image was enhanced by using a method to 
equalize the histograms, and the noise was eliminated by a smoothing process. 
 
2.3 Extraction of optic nerve head 

 After the optic nerve head was highlighted with a greater brightness than that used for highlighting other tissues, it 
was investigated by the p-tile technique. The shape of the detected region was approximated by a circle. Figure 2 (b) 
shows the image of the detected optic nerve head. 
 
2.4 Detection of hemorrhage candidates 

The pixel values of hemorrhages are lower than those of other regions; therefore, the hemorrhages were detected by 
performing finite difference calculations along with smoothing. This method was carried out in two steps: the rough and 
detailed detection processes. Firstly, the fundus images were smoothed by using a mask of 27 × 3 pixels. Next, the 
difference in pixel values between two smoothed images was calculated. Subsequently, the hemorrhage and blood 
vessel candidates were segmented by the thresholding technique. Figure 2 (c) shows an image of the roughly detected 
vessels. As shown in this image, the end of thin vessels was not detected. Therefore, the end of the vessels was detected 
by using a similar method that uses two types of images smoothed by using a mask of 9 × 3 pixels. Figure 2 (d) shows 
an image of the detailed parts of the vessels. By combining both types of techniques for the detection of hemorrhages 
and vessels, we could detect the all the blood vessels from the optic nerve head till the end of the vessels. Figure 2 (e) 
shows an image of the end of the vessels. Finally, the vessel candidates connected to the optic nerve head were 
eliminated, and the vessel candidates with large or very small areas were eliminated. Figure 2 (f) shows the resulting 
image. 
 
2.5 Elimination of incorrectly detected vessels 

The retinal vessel images include those reflected from the arterial wall, and the fundus images were obscured due to 
cataract. Therefore, it was difficult to detect all the vessels till the end by using the method proposed in section 2.3. We 
can resolve such difficulties by changing the threshold value proposed in section 2.3. However, the hemorrhage 
candidates were connected to the vessel candidates. Therefore, our method could not separate the connected candidates 
into hemorrhage and vessel candidates. The measures taken to resolve this problem are described as follows. 

Firstly, the threshold value was selected in a manner that the vessels could be continuously detected. The centerlines 
of the vessels were extracted by using a thinning technique, as shown in Fig. 2 (g). Subsequently, the centerlines with 
large areas were extracted such that hemorrhage candidates could not be extracted. Finally, the vessels extracted on the 
centerlines were eliminated in order to avoid the vessels from being incorrectly detected. Figure 2 (f) shows the 
resulting image. 
 
2.6 Elimination of funicular shapes 

Since not all false positives on the vessels were eliminated by the method proposed in section 2.5, the remaining false 
positives were eliminated by evaluating the length-to-width ratio. The value of this ratio was small when the candidate 
was incorrectly detected as a vessel. The details of the evaluation are described as follows, and the illustration is shown 
in Fig. 3. 

Firstly, the minimum rectangular region that surrounds the candidates was determined. The angle of the hemorrhage 
candidate was then determined by calculating the moment in order that the X- and Y-axes could be determined by using 
the obtained angle. Subsequently, binarized images were projected on the X- and Y-axes. By examining each of the 
projected images, the positions Xa, Xb, Ya, and Yb were determined. In this way, we could specify the black and white 
regions. Finally, we could determine the length-to-width ratio, denoted by LW, using the following equation: 
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where min(|Xa–Xb|,| Ya–Yb |) is the mean value of the width, and max(|Xa–Xb|,| Ya–Yb |) is the mean value of the length. 
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2.7 Detection of exudate candidates 

The pixel values of exudates are brighter than those of other regions. Therefore, the exudates were detected by the 
same method as that used for hemorrhage detection. Firstly, the fundus images were smoothed by using a mask of 37 × 
3 pixels. Then, the difference in the pixel values between two smoothed images, namely, the rough and detailed images, 
was calculated. Subsequently, the exudate candidates were segmented by the thresholding technique. Figure 4 (b) shows 
an image of the detected exudate candidates. Finally, the exudate candidates with a large area and those with very small 
areas were eliminated. Figure 4 (c) shows an image where the exudate candidates with a large area have been 
eliminated. 
 
2.8 Elimination of false positives by feature analysis 

The minimum rectangular region that surrounds the hemorrhage and exudate candidates extends beyond five pixels in 
each direction along the X- and Y-axes. Next, the average pixel values inside and outside the candidate region were 
calculated. Further, the contrast was determined by evaluating the ratio between the two average values. Figure 4 (d) 
shows an image obtained after the exudate false positives were eliminated based on the contrast. 

Furthermore, we extracted the following features from the rectangle regions: 13 features calculated from the co-
occurrence matrix [10], two features based on gray-level difference statistics [11], and one feature determined by the 
extrema method [12]. The 13 features were angular second moment, contrast, correlation, sum of square, inverse 
difference moment, sum average, sum variance, sum entropy, entropy, difference variance, difference entropy, and two 
kinds of information measurements for correlation. The two features based on gray-level difference statistics were 
angular second moment and mean. The minimum rectangular region that surrounds the candidates was determined. 
These features were calculated on the rectangular regions in the three grey level images, which comprised red, green, 
and blue bit images. Finally, the false positives were eliminated by a rule-base method. Fig. 2 (i) is an image obtained 
after hemorrhage detection; Fig. 4 (e), that obtained exudate after detection. 
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Figure 3 Feature extraction by evaluating the length-to-width ratio and the minimum width of a candidate, 
which are determined from the binarized hemorrhage image. 
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Figure 4 Illustration of the exudate detection process: (a) Input image. (b) Detected exudates. (c) Exudate 

candidates in image (b) with large areas were eliminated. (d) False positives were eliminated based on 
contrast. (e) Final result of exudate detection.  

 
 

3. RESULTS AND DISCUSSION 
 

To evaluate our method of detecting hemorrhages, we examined 113 fundus images, among which hemorrhages were 
detected in 26 images, and no abnormal cases were detected in the remaining 87 images. By using our scheme, we 
succeeded in obtaining satisfactory results with a sensitivity of 85% when the specificity was 21%. Our scheme could 
not detect four abnormal images. Three out of the four images included one image of a hemorrhage connected to the 
blood vessels and two images of hemorrhages identified as neovascular glaucomas. Since neovascularization is caused 
by ingravescence of diabetic retinopathy, the neovascular glaucomas do not have to be detected using a CAD during 
mass screening. Moreover, it was observed that one hemorrhage surrounds the exudates. Consequently, although our 
scheme could detect such exudates, it could not detect such a hemorrhage. Figure 5 shows a hemorrhage surrounding 
the exudates. Therefore, it can be said that our scheme could detect almost all cases of isolated hemorrhages. However, 
since the parameter of hemorrhage detection was selected such that microaneurysms could be detected, our scheme 
erroneously detected noise as a hemorrhage candidate. When the parameter of hemorrhage detection was selected such 
that the microaneurysms were not be detected, the specificity increased to 73%. 

To evaluate our method for detecting exudates, we examined 109 fundus images, among which exudates were 
detected in 13 images, and no abnormal cases were detected in the remaining 96 images. By using our scheme, we 
succeeded in obtaining satisfactory results with a sensitivity of 77% when the specificity was 83%. Our scheme could 
not detect three abnormal images. In two of these images, the exudates were bright. Since the exudates in one image 
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Fig. 5. Hemorrhage surrounding the exudates. (a) A fundus image including a hemorrhage with exudates. A 

black arrow indicates a hemorrhage. (b) The enlarged image of the region indicated by the black arrow in 
(a). 

 
 

were present on the eyelash, the characteristics of the exudates were different from the general ones. By selecting the 
parameters appropriate for exudate detection, our scheme could detect these two exudates. However, as the number of 
false positives increased, we did not change the parameters. The other exudates existed in an unusual fundus image, 
which was yellower than the conventional fundus images. 

To eliminate the incorrectly detected hemorrhages, we used 13 features calculated from the co-occurrence matrix for 
each of three kinds of gray bit images. The most valid feature was the inverse difference measured for the green bit 
image, which could eliminate 24% of the false positives. Further, the second valid feature was difference variance 
measured for the blue bit image, which could eliminate 15% of the false positives. The contrast in the hemorrhage and 
retinal regions in the blue bit image was lower than that for the red bit image. However, the features calculated from the 
co-occurrence matrix in the blue bit image were the most effective. Therefore, we used 39 features calculated from the 
co-occurrence matrix for the three kinds of gray-level images in order to eliminate false positives. 

We used an AMD Athlon X2 4600+-mounted (2.4 GHz) computer with a 4-GB memory operating in the SUSE 
Linux 10.1 environment. Processing each image required approximately 2.6 s. There were testing fundus images on the 
network access server (NAS), and the file size per image was approximately 6 MB. Therefore, our scheme could detect 
hemorrhages and exudates in real time. 
 
 

4. CONCLUSION 
 

In this study, a new scheme for automatically detecting hemorrhages and their exudates is presented by using 
digitized ocular fundus images as an example. This scheme can be applied to the computer-aided diagnosis (CAD) 
system for diagnosing diseases detected in the eyes. The results of the preliminary testing showed a desirable 
consistency with those obtained from the proposed scheme. It was demonstrated that the algorithm detected 
abnormalities with higher accuracy and reliability. The result of the initial work on fundus images clarified that the 
efficiency and accuracy of diabetic retinopathy diagnosis was considerably improved. The results of this study will be 
sent to ophthalmologists for further evaluation. The efficiency and accuracy diagnosing of diabetic retinopathy was 
improved due to the detection of hemorrhages and exudates with a higher accuracy. The application of the proposed 
scheme to fundus images enhances the CAD system performance for detecting hemorrhages and exudates in the fundus 
images. Presently, we are focusing our efforts on improving the scheme in order to minimize the problems mentioned in 
the discussion section. In the future, the integrated analysis scheme will be further improved, and more clinical cases 
will be reported for evaluating its accuracy. The techniques employed in our system will help in improving diagnostic 
accuracy as well as in reducing the workload of ophthalmologists in the future. 
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