
CAD on liver using CT and MRI

Xuejun Zhanga, Hiroshi Fujitab, Takeshi Harab, Xiangrong Zhoub, Masayuki
Kanematsuc, Ryujiro Yokoyamac, Hiroshi Kondoc, and Hiroaki Hoshic

aSchool of Computer, Electronics and Information, Department of Electronics and
Information Engineering, Guangxi University, Nanning City, Guangxi 530004, P. R. China

bDepartment of Intelligent Image Information, Division of Regeneration and Advanced
Medical Sciences, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
cDepartment of Radiology, Gifu University School of Medicine & Gifu University Hospital,

Gifu 501-1194, Japan
Email: xjzhang@gxu.edu.cn

Abstract. The incidence of liver diseases is very high in Asian countries. This
paper introduces our computer-aided diagnosis (CAD) system for diagnosing
liver cancer and describes the fundamental technologies employed in the system
and its performance. The results showed that our system is useful for
diagnosing liver cancer, and it is expected that employing CAD in clinical
practice would reduce the mortality caused by liver cancer in Asian countries.
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1 Introduction

Primary malignant liver tumors, including hepatocellular carcinoma (HCC), cause
1.25 million deaths per year worldwide. HCC is prevalent in Asia and Africa because
of presence of a large subclinical population with hepatitis C virus infection.
Additionally, during the last 2 decades, the mortality rate from primary liver cancer is
reported to have increased by 41%, and the proportion of hospitalization due to this
disease has increased by 46% [1]. Although globally liver cancer is ranked 9 as a
cause of death due to organ cancer, it is ranked from 1 to 3 in many Asian countries,
particularly in the coastal regions such as Japan, Korea, China, and Southeast Asian
countries. Early detection and accurate staging of liver cancer is an important issue in
practical radiology. Currently, although multidetector-row computed tomography
(MDCT) or MRI is widely used for the diagnosis of liver tumors, the amount of
information obtained from CT/MRI is very large, and it is difficult for inexperienced
radiologists or physicians to interpret all the images in a short duration.

The purpose of our study was to establish a computer -aided diagnosis (CAD) and
surgery system for aiding decision-making with regard to the diagnosis of liver cancer
or supporting radiologists and surgeons in planning of liver resections or living donor
transplantation by using multiphase CT/MRI images.
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2 Methods and Experimental Results

Three datasets from different hospitals were examined with different MDCT
scanners. In the main dataset, an MDCT scanner (Aquilion; TOSHIBA, Japan) was
used to scan a quadruple-phase protocol that included unenhanced, hepatic arterial,
portal venous, and delayed phase images. Each patient received the contrast/bolus
agent (Oypalomin370 or Optiray320) via a power injector at a rate of 3 ml/s, and the
final average volume of the contrast material was 100 ml (range, 110–182 ml). Four
complete acquisitions of the entire liver were obtained in a craniocaudal direction
during one breath-hold with the following parameters: slice interval, 0.625–1.25 mm;
bits stored, 16 bits; pixel-spacing, 0.50–0.625 mm; spatial resolution, 512 × 512; 165
mAs; and 120 kVp. Non-contrast scanning (i.e., the first pass) was performed in all
patients. The final average start time for the hepatic arterial phase was 37 s (range,
35–40 s). The portal venous phase and the equilibrium phase (i.e., the third and fourth
passes, respectively) scans were acquired at 65 s (range, 60–70 s) and 180 s,
respectively, after the contrast material injection. These cases were categorized by
experienced radiologists, and 12 normal cases, 32 cases with 44 HCC tumors, and 9
other tumor cases were confirmed.

Precontrast T1-weighted MR images are ordinarily obtained by using a spin-echo
or gradient-recalled-echo sequence. In our experiment, the repetition time (TR)/echo
time (TE) was set at 316 ms/11 ms. Further, fast spin-echo (FSE) T2-weighted
imaging, which has been shown to play a key role in the characterization of liver
lesions, was performed by using an FSE sequence. The signal intensities of
metastases using T1- and T2-weighted images are variable but are usually prolonged.
T2-weighted imaging is reported to be very effective in enabling radiologists to
differentiate between cavernous hemangiomas and metastases. In our experiment, the
effective TR/effective TE of an FSE T2-weighted image was set at 4615 ms/80 ms.
We obtained the gadolinium-enhanced hepatic arterial and equilibrium phase images
by using a phased-array body multicoil with the following settings: TE, 1.6 ms; TR,
150 ms; flip angle, 90°; matrix, 512 × 512; and breath-hold acquisition, 26 s. Images
were obtained after administering an antecubital intravenous bolus injection of 0.1
mmol/kg gadopentetate dimeglumine (Gd-DTPA) (Magnevist; Schering AG, Berlin,
Germany), followed by flushing with 15 ml of sterile saline solution. The scan timing
was 18 s and 3 min after initiation of the contrast injection. Using a 1.5-T
superconducting magnet (Signa Horizon; GE Medical Systems, Milwaukee, WI), 320
MR images of 80 patients (4 images per patient) with focal liver lesions were
obtained. These cases were diagnosed by 2 experienced radiologists, and a majority of
these cases were pathologically confirmed by biopsy or surgery. Although it was
impossible to diagnose all lesions pathologically, the remaining patients underwent
angiography-assisted ultrasonography, CT, or follow-up MRI to confirm the
diagnosis. We followed a stringent criterion for diagnosing malignancy and excluded
cases in which the lesion size was very small.

Based on the above CT/MRI datasets, our developed systems contained the
following components:
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2.1 Segmentation of the liver region with tumor tissues

We propose a fully automatic method to segment the liver and other organs on
multi-phase MRI or CT images, regardless of the presence of cirrhosis or tumors such
as hemangioma, HCC or cyst within the liver [2]. Our method is based on the edge
detection [3] or combined with a subtraction processing algorithm that is independant
of the intensity or noise of the CT or MR images. In comparison to other methods [4–
8], such a “Press-One-Button” system is extremely user-friendly and can be used
without any training; moreover, it provides highly accurate 3D images of different
organs within an average of 12 min of running on a PC (Pentium M 1.0 GHz with 512
MB RAM). This time is reasonable and acceptable for clinical applications. All the
liver regions in 53 cases were successfully segmented by visual evaluation, without
losing any part of the hepatic lesions. A comparison of the gold standard for liver
regions prepared by radiologists with our experimental results revealed that in 6 cases
of the entire dataset, the average error rate of liver segmentation was within 4.3%.
Eleven hepatic tumors (3 hemangioma, 4 HCC, 3 metastasis, and 1 cyst) showing
distinct intensity difference from the liver scanned in the portal venous MDCT images
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Fig. 1. An overall procedure of the segmentation of an abnormal liver region from MDCT
based on the edge detection and subtraction method [2].
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were extracted successfully and integrated into the final region. Figure 1 shows an
extracted 3D liver tissue, in which a large lesion that appears as a huge hole is of the
region affected by hemangioma. Other cases as normal liver or HCC tumors with only
subtle intensity difference to liver are preformed with high stable results by our
proposed method without losing any hepatic tissues.

2.2 Computer-aided detection of hepatocellular carcinoma on multiphase CT
images

Following the enhancement with the contrast material, the presence of HCC is
indicated by high- and low-intensity regions in arterial and equilibrium phase images,
respectively. We propose an automatic method for detecting HCC based on edge
detection and subtraction processing [9]. Within a liver area segmented according to
our scheme, black regions were selected by subtracting the equilibrium phase images
with the corresponding registered arterial phase images. From these black regions, the
HCC candidates were extracted as the areas without edges by using Sobel and LoG
edge detection filters, as shown in Fig. 2a. The false-positive (FP) candidates were
eliminated by using 6 features extracted from the cancerous and the surrounding liver
regions. Other FPs were further eliminated by opening processing. Finally, an
expansion process was applied to acquire the 3D shape of the HCC, as shown in Fig.
2b. In this experiment, we used the CT images of 44 patients with 44 HCCs. We
successfully extracted 97.7% (43/44) HCCs successfully by our proposed method,
with an average number of 2.1 FPs per case.

2.3 Application of an artificial neural network to the computer-aided
differentiation of focal liver diseases in MR imaging

(a) (b)

Fig. 2 Extraction of HCC candidates is performed by subtracting the equilibrium phase
image from the arterial phase image. The edge of the HCC is lost in the subtraction map
(a) after edge detection by Sobel filter and LoG filter, and the final region of HCC (b) is
obtained by the region growing method on the extracted candidate regions [9].
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The differentiation of focal liver lesions in MR imaging is primarily based on the
intensity and homogeneity of lesions with different imaging sequences. However, in
some patients, these imaging findings may be falsely interpreted due to the involved
complexities. Our purpose was to establish a CAD system named LiverANN for
classifying the pathologies of focal liver lesions into 5 categories by using the
artificial neural network (ANN) technique, which has been proved to be useful in
various medical fields [10–13]. On each MR image, a region of interest (ROI) in the
focal liver lesion was delineated by a radiologist. The intensity and homogeneity
within the ROI were automatically calculated to obtain numerical data that were
analyzed by input signals to LiverANN. The outputs were the following 5
pathological categories of hepatic diseases, namely, hepatic cyst, hepatocellular
carcinoma, dysplasia in cirrhosis, cavernous hemangioma, and metastasis. Of the 320
MR images obtained from 80 patients (4 images per patient) with liver lesions,
LiverANN classified 50 cases of training set into 5 types of liver lesions with a
training accuracy of 100% and 30 test cases with a testing accuracy of 93% [14–16].

2.4 3D volume analysis of cirrhosis

Cirrhosis of the liver is one of the leading causes of death due to diseases, killing
more than 12,000 people in Japan each year. In the United States, about 26,000
people die from chronic liver diseases and cirrhosis each year. Liver MR imaging is
useful for the diagnosis of cirrhosis. The enlargement of the left lobe of the liver and
the shrinkage of the right lobe are helpful signs in MR imaging in the diagnosis of
cirrhosis of the liver [17–20]. To investigate whether the volume ratio of left-to-whole
(LTW) is effective to differentiate a cirrhotic liver from a normal liver, we developed
an automatic algorithm for segmentation and volume calculation of the liver region in
MDCT scans and MR imaging [21]. As shown in Fig. 4a, the 3D liver is divided into

Fig. 3. A multi-layer feedforward network used in LiverANN [14-16] can
automatically find out the internal relationship between inputs and outputs by learning
from samples by employing backpropagation algorithm. Note: T2H = homogeneity of
T2-weighted imaging. HCC = hepatocellular carcinoma.
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left and right lobes along the umbilical fissure. The volume (V) of each part is
calculated slice by slice. The degree of cirrhosis is defined as the ratio of LTW =
Vleft/(Vright + Vleft), where Vright + Vleft is the volume in Fig. 4b and Vleft is the
volume in Fig. 4c. 22 cases including normal and cirrhotic liver on MR and CT slices
are used for 3D segmentation and visualization. The whole hepatic volume of the
cirrhotic liver (931 ± 307 cm3) was slightly lower than that of the normal liver (1070
± 412 cm3), while the volume of the left lobe in the cirrhotic liver (238 ± 53 cm3) was
larger than that of the normal liver (176 ± 69 cm3). The volume ratio of LTW was
relatively higher in the cirrhotic liver (25.6% ± 4.3%) than in the normal liver (16.4%
± 5.4%).

2.5 Improving the classification of the cirrhotic liver by shape and texture
analysis

Two shape features were calculated from a segmented liver region, and 7 texture
features were quantified using the grey level difference method (GLDM) [22] within
the small ROIs. The degree of cirrhosis was derived by integrating the shape and
texture features of the liver into a 3-layer feedforward ANN [23], as shown in Fig. 5.
The liver was regarded as cirrhotic if the percentage of ROIs with a degree of
cirrhosis of more than 0.5 was greater than 50%. The initial experimental result
showed that the ANN-based method classified liver cirrhosis with a training accuracy
of 100% on the 100 ROIs included in the training set. In the testing of the whole liver
region, 82% (9/11) cirrhotic and 100% (7/7) normal cases were correctly
differentiated from 18 test cases by using the shape and texture analysis as compared
to 55% (6/11) cirrhotic and 100% (7/7) normal cases by using the texture analysis

Umbilicalfissure

(a) (b) (c)

Fig. 4. 3D volume analysis of cirrhosis. (a) The liver is divided into left and right lobe
by drawing an umbilical fissure. The volume ratio of LTW is defined as the ratio
between the whole liver (b) and left lobe (c) volumes [21].
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alone. According to the ROC analysis, the Az value (the area under the ROC curve)
improved from 0.57 to 0.84 by integrating the shape features into ANN inputs [24].

3 Discussion

The challenge of a liver segmentation technique is to robustly extract the liver
regions with lesions or regions that have received partial transplants. The liver not
only has radiodensity that is similar to its surrounding structures, resulting in the
common problem of connectivity to the heart, stomach, or kidney, but it is also
affected by hepatic diseases that may change its shape and internal texture or
homogeneity. In addition, the image quality from different modalities varies in terms
of signal-to-noise ratio, motion artifacts, etc. There are some reports on the
segmentation of the abdominal organs on CT images by using a thresholding method,
likelihood function, or hepatic vessels. However, many reports address only the
techniques involved in the segmentation of the normal liver tissues, and these
techniques cannot usually be used for extracting the abnormal liver regions. In order
to ensure that our software can be widely used in different hospitals for different
modalities, we used edge detection in combination with a subtraction processing
algorithm that is independent of the intensity or noise of the CT images or of the
accuracy of the MR images.

Although our affine-based registration method was useful for liver segmentation,
the position of cancer in arterial phase images might be different from that in
equilibrium phase images when rigid transformation is used alone. In particular, if the
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Fig. 5. ANN structure for calculating the degree of cirrhosis [24].



8 CAD on liver using CT and MRI

tumor is small in size, the subtraction process cannot enhance the cancer region in the
same position. Therefore, the small HCC candidate was eliminated as FP after edge
detection. In our study, this HCC could be detected by using the nonrigid
transformation method [25, 26], even if the patient changed the duration of breath-
hold frequently during the period when the scanning was performed twice.

Focal liver lesions can be accurately detected and characterized by MR imaging.
The misdiagnosis by LiverANN might have occurred because some HCCs are mildly
hyperintense in T2-weighted images, moderately hypervascular in the hepatic arterial
phase, and hypointense in the equilibrium phase. Hypervascular metastases such as
renal cell carcinoma or carcinoid tumor have brisk arterial enhancement and may be
indistinguishable from HCC. The broad spectrum of enhancement pattern or
morphology of HCC makes it difficult to characterize this type of tumor using the
CAD algorithm, and some overlap in imaging features is observed between HCC and
metastasis in daily clinical practice. Information of other features such as the presence
of fibrous capsules or cirrhotic changes around the focal liver lesions, elevated serum
alpha-fetoprotein (AFP) level, or history of extrahepatic primary cancer is critical in
differentiating HCC and metastasis; such supplementary information other than signal
intensity and homogeneity of lesions is very helpful to radiologists in correctly
interpreting the MR images. The presence of cirrhosis and the patient’s clinical and
laboratory data are helpful in making the diagnosis. The integration of such additional
information into LiverANN would be the next step of this study.

The results of our study showed that the left lobe of the liver was enlarged while
the right lobe was shrinked in patients with liver cirrhosis. No statistically significant
difference was observed in the whole hepatic volume between the cirrhotic liver and
the normal liver. However, the difference in the volume ratio of LTW between the
cirrhotic liver and the normal liver was significantly improved by our proposed
method, and the 3D feature performed better than the 2D feature [27, 28].

The 2 misdiagnosed cirrhosis cases had very similar shape feature values to those
of the normal cases; this is because the shape of the liver may change in different
sleeping postures, and the shape features may be affected by the scanning position
when only one 2D slice is used. Our next step is to calculate the 3D shape features to
solve this problem, since the dullness of the left lobe remains the same regardless of
the variation in the shape. Furthermore, the CAD system is expected to differentiate
micronodular cirrhosis, macronodular cirrhosis, and mixed types into different
categories by using ANN.

4 Conclusion

In conclusion, we developed a CAD system for the detection and diagnosis of
liver diseases on MR and CT images. The experimental results demonstrated that our
system functioning as a computer-aided differentiation tool may provide radiologists
with referential opinion during the radiological diagnostic procedure; the performance
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of our 3D segmentation technique was satisfactory for surgical use, and the agreement
of the LTW ratio with shape and texture features may be effective for predicting
cirrhosis on MR images. It is expected that employing CAD in clinical practice would
reduce the mortality caused by liver cancer in Asian countries.
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