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Abstract 
 

Texture analysis of the liver for the diagnosis of 
cirrhosis is usually region-of-interest (ROI) based. 
Integrity of the label of ROI data may be a problem 
due to sampling. This paper investigates the use of K-
means clustering, an unsupervised classifier which 
does not depend on the label of the data, for 
classification.  Moreover, a procedure for generating a 
ROC curve for k-means clustering is also described in 
this paper. Using a MRI database of 44 patients with 
16 cirrhotic and 28 non-cirrhotic liver cases, k-means 
clustering achieves an area under the ROC curve 
(AUC) index of 0.704. This is comparable to the 
performance of a linear discriminant analysis (LDA) 
and an artificial neural network (ANN) with the former 
attains a resubstitution and an average leave-one-
case-out AUC of 0.781 and 0.779, respectively, and the 
latter attains a testing AUC of 0.801. 

 
 
1. Introduction 
 

Cirrhosis of the liver is one of the leading causes of 
death by disease, killing more than 20,000 people in 
the United States each year. Cirrhosis of the liver is 
characterized by the presence of widespread fibrosis 
and regenerative nodules in the liver. The fibrosis and 
nodules formation causes distortion of the normal liver 
architecture, resulting in characteristic texture patterns. 

 Liver biopsy has been, and still is, the gold 
standard for the diagnosis of cirrhosis. However, 
advances in imaging technology in recent years results 
in that hepatic magnetic resonance imaging (MRI) is 
becoming a very useful imaging modality in examining 
the liver non-invasively (Figure 1). In interpreting 
hepatic MRI images, radiologists look for 
manifestations such as irregularity of the liver 
boundary, enlargement in the liver, and the presence of 
fibrosis and regenerative nodules. Interpretation of 
hepatic texture patterns, however, is proved to be 

difficult for human observers. This calls for the interest 
in machine analysis of hepatic texture patterns. 

Texture analysis for computer-aided diagnosis 
(CAD) in medical images has been studied in many 
disciplines including the diagnosis of breast cancer in 
mammograms [1-5], lung nodules in chest radiographs 
[6-8], osteoporosis in bone x-ray images [9-11], and 
abnormalities in kidney and liver [12-14]. Analysis is 
typically based on regions-of-interest (ROIs). A 
classifier is then subsequently used to classify the data 
(feature vectors) into a number of pre-defined classes. 
Linear discriminant analysis (LDA), artificial neural 
network (ANN) and support vector machine (SVM) are 
among the popular choices of classifiers. The above 
named classifiers are in the category of supervised 
classifier which employs a training data set (with 
known class labels) for training the classification rule. 

Problem in diagnosing abnormalities using a 
scheme involving ROIs and supervised classifier is that 
a sampled ROI may or may not contain the features 
that typically represent the disease stage of the 
organ/structure from which the ROI originated. Yet, 
disregard of its disposition, the ROI will be given the 
same label as any other ROI from that organ/structure. 
If a supervised classifier is subsequently used, the 
uncharacteristic ROI will constitute an outlier and will 
have an influence in the training of the classifier.  

In this paper, classification of livers as cirrhotic or 
non-cirrhotic based on texture features measured on 
ROIs is studied with the use of a different type of 
classifier, the unsupervised classifier. An unsupervised 
classifier differs from a supervised classifier in two 
ways: (1) it works with unlabeled data, and (2) training 
of a classification rule with the use of a training data 
set is not required.  K-means clustering is a simple and 
popular unsupervised classifier and is chosen for this 
study. The ROI texture feature data employed in this 
study is a subset of the data set reported in Kato et al. 
[15].  

In addition, a method for generating an ROC curve 
in depicting the classification performance of k-means 
clustering is also described in this paper. Receiver 
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operating characteristic (ROC) analysis [16] is widely 
used for evaluating performance of classification/CAD 
schemes, however, schemes employing k-means 
clustering typically attain only a single measure of 
sensitivity and specificity. In order to enable full 
comparisons between classification schemes 
employing k-means clustering and those employing 
other classifiers, an ROC curve generation method for 
k-means clustering is developed.  

Finally, with the use of the above ROC curve 
generating method, the classification results using k-
means clustering are compared with the classification 
results using a classical LDA and an ANN classifiers, 
with the former computed in this study and the latter 
obtained from Kato et. al. [15]. 

 
  

    
 
 
 
 
 
 
 
 
 
 
 
   

Figure 1. An example of hepatic MRI image. 

 
 
2. Method and Materials 
 
2.1. MRI Data 
 

MRI data of a subset of 44 patient cases (16 
cirrhotic; 28 non-cirrhotic) reported in a study by Kato 
et al. [15] was employed in this paper. Details of the 
MRI data are described in the following. 

The above 44 patients were identified from the 
archive of Gifu University Hospital, Japan in a 
retrospective study. All the 44 patients had partial 
hepatectomy for malignant hepatic lesions in the period 
between February 2000 and January 2002 with 
preoperative evaluations of hepatic tumors using 
gadolinium-enhanced MRI performed within 2 weeks 
prior to surgery. Diagnoses among the 44 patients were 
hepatocellular carcinoma in cirrhosis, hepatocellular 
carcinoma in chronic viral hepatitis type C or type B, 
cholangioccllular carcinoma and liver metastasis. 
Surgical specimens were retrospectively examined by a 
pathologist who was blinded to patient histories and 

radiology and surgery reports. The degree of hepatic 
fibrosis (Figure 2) in non-tumorous liver parenchyma 
was evaluated using the 5-point Desmet scale [17] with 
F0 indicates no fibrosis; F1, mild fibrosis; F2, 
moderate fibrosis; F3, severe fibrosis; and F4, 
cirrhosis. For the evaluation of a two-class CAD 
scheme employed in Kato et al. [15], livers with 
pathologic grades of F3 and F4 were taken as true 
positives (cirrhotic livers) and livers with pathologic 
grades F0-F2 were taken as true negatives (non-
cirrhotic livers), resulting in a total of 16 true positives 
and 28 true negatives. 

 
 

 
 

Figure 2. Texture patterns of different degree of 
fibrosis ranging from normal (left) to cirrhosis (right). 

 
The preoperative hepatic MRI images were 

acquired using a 1.5T  MR scanner (Signa Horizon; 
GE Medical Systems, Milwaukee, Wis.). MRI images 
of several sequences were obtained including T1- and 
T2-weighted MRI as well as gadolinium-enhanced pre-
contrast, hepatic arterial, portal venous and equilibrium 
phases MRI. All MRI images were acquired in the 
axial plane. The depth resolution of the images was 16 
bits (65536 gray scale levels) and the size of the axial 
images was 512 × 512 pixels with a section thickness 
of 8-10 mm and a 2- to 3-mm intersection gap. 
Depending on the size of the coverage, a MRI 
sequence of a patient typically consisted of a stack of 
18-22 (axial) slice images. 

Only the gadolinium-enhanced equilibrium phase 
images were of interest in this study. This is due to the 
findings in Kato et al. [15] that performance of the 7 
texture features extracted from the gadolinium-
enhanced equilibrium phase image is superior to that 
extracted from other MRI sequence or combination of 
sequences. From the equilibrium phase images of each 
patient, 10 ROIs were selected by a radiologist who 
was blinded to the patient information and the 
pathologic diagnosis. The ROIs were 32 × 32 pixels in 
size and were placed in the liver parenchyma. Care was 
taken to avoid large blood vessels, focal hepatic lesions 
and prominent hepatic artifacts. The locations of the 
ROIs were planned to cover the liver strategically with 
eight in the right liver lobe (typically, two in each of 
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Couinaud's liver segments V, VI, VII and VIII (Figure 
3)) and two in the left lobe (typically, one in each of 
Couinaud's liver segments II and III). 

 
 

 
 

Figure 3. Couinaud's liver segments. The Couinaud 
classification divides the liver into eight independent 
segments, each of which has its own vascular inflow, 
outflow and biliary drainage. Resection of each 
segment can be performed without damaging the 
remaining segments. 

 

Furthermore, 7 numeric texture features were 
measured on each of the ROIs in Kato et al [15]. The 
seven texture features were contrast, angular second 
moment, entropy, mean and inverse difference moment 
derived from co-occurrence matrix [18] as well as the 
mean and standard deviation derived from the image 
intensity histogram. Each feature was then averaged 
over the 10 ROIs. The averaged feature vectors of 
individual patient case formed the basis of the MRI 
data employed in this study. 
 
 
2.2. K-means clustering 
 

K-means clustering is one of the simplest 
unsupervised classification techniques. It is also one of 
the most popular unsupervised learning algorithms due 
to its simplicity. As mentioned before, the main 
differences between a supervised classifier such as the 
LDA or an ANN, and an unsupervised classifier is that 
a training data set with known class labels is required 
for the former to train the classification rule, whereas 
such a training data set and the knowledge of the class 
labels in the data set are not required for the latter. In 
addition, unsupervised clustering techniques are able to 
discover clusters inherited in the data.   

 
2.1.1. The algorithm. The k-means clustering 
algorithm partitions a given data set into k mutually 
exclusive clusters such that the sum of the distances 
between data and the corresponding cluster centroid is 
minimized. The above distance measure between two 
data points is taken as a measure of similarity. A 
number of distance measures can be used depending on 
the data. The Minkowski distance, the Euclidean 
distance and the Mahalanobis distance are some typical 
examples of distance measures. In this study, the 
standard Euclidean distance was used as the distance 
measure. 

Mathematically, given a set of data vectors X = [x1, 
..., xn] where n is the number of observations, the k-
means clustering algorithm groups the data into k 
clusters with the aim at minimizing an objective 
function, a squared error function. As the Euclidean 
distance was adopted as the distance measure in this 
study, the objective function J is then explicitly given 
as  
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where cj is the j-th cluster and µj, is the centroid of  the 
cluster cj . Therefore, the k-means clustering algorithm 
is an iterative algorithm that finds a suitable partition 
which minimizes the sum squared error. The algorithm 
begins with the initialization of k cluster centroids. 
Different approaches in initialization have been 
suggested. A simple method is to initialize the problem 
by randomly select k data points from the given data. 
The remaining data points are classified into the k 
clusters by distance. The centroids are then updated by 
computing the centroids in the k clusters. 

To summarize, there are different categories of 
clustering techniques including partitioning, 
hierarchical, density-based and grid-based clustering. 
The k-means clustering algorithm is a clustering 
technique that falls into the category of partitioning. 
The algorithm finds a partition in which data points 
within a cluster are close to each other and data points 
in different clusters are far from each other as 
measured by similarity. As in other optimization 
problems with a random component, the results of k-
means clustering are initialization dependent. This is 
usually dealt with by running the algorithms several 
times, each with a different initialization. The best 
solution from the multiple runs is then taken as the 
final solution.  

 
2.1.2. Determining the number of clusters. The k-
means clustering algorithm requires the knowledge of 
k, the number of clusters. Unfortunately, this is usually 
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not known a prior. Furthermore, real data are often 
corrupted with noise and the clusters in real data sets 
are often not well separated. As a result, the data set 
can be interpreted with several possible numbers of 
clusters. This means determining the number of 
clusters is an ill-posed problem. Nevertheless, a 
number of approaches have been suggested in finding 
the number of clusters. Here, the number of clusters is 
determined by assessing the 'quality' of the clustering 
results over a range of k. 

In this study, the silhouette index was employed as 
a cluster validity index. A silhouette index was defined 
on each and every data point (feature vector) in the 
feature space. The silhouette index of the i-th data 
point is given by  
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where ai is the average distance of the i-th point to 
other points in the same cluster and bi is the average 
distance of the i-th point to points in its nearest 
neighbour cluster. The silhouette index indicates how 
well a data point is clustered. In particular, the 
silhouette index Si is a normalized difference measure 
of the average distance of the i-th point to all other 
points in the same cluster and that of the i-th point to 
all other points in the closest cluster with distance 
being the Euclidean distance. The value of the 
silhouette index Si ranges from +1 to -1. A value of 
unity indicates that the point is very distant from its 
neighbor clusters while a value of -1 indicates that the 
point is closer to points in its nearest neighbor cluster 
than to those in its own cluster.  

An average silhouette is obtained by averaging the 
silhouette values over the number of data points. The 
average silhouette  
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is an index measuring the overall 'quality' of the 
partition where Si is the silhouette index defined in 
Equation 2 and N is the number of observations. 
Similar to the point silhouette index, a high value in 
the average silhouette indicates the 'quality' of the 
partition is good. Furthermore, the number of clusters, 
k, is a parameter of the average silhouette. The number 
of clusters can be determined by maximizing S(k) over 
a range of k. 
 
 

2.3. ROC curve for k-means clustering 
 

In evaluating a classification/CAD scheme, ROC 
analysis [16] is widely used. An ROC curve is a plot of 
the true positive fraction (tpf) verses the false positive 
fraction (fpf). It depicts the trade-off between the 
sensitivity and the specificity. For multivariate 
observations, data can be transformed into univariates 
using, for example, a linear discriminant function. The 
probability density functions of the transformed 
univariates can then be easily computed. If a linear 
discriminant function is used in the transformation, the 
transformed value is often referred to as the 
discriminant score.  

From the perspective of ROC curve generation, the 
probability density functions of the transformed 
univariates are the underlying curves from which the 
ROC curve is generated. Furthermore, the decision-
variable in generating the ROC curve is defined on the 
axis of the transformed univariates (Figure 4). 

 
 

 
 
 

Figure 4. The underlying probability density functions 
that generate an ROC curve. 

 
For classifiers such as the LDA and ANN, output of 

the classifier is a univariate, hence, ROC curve 
construction is straightforward. However, it should be 
noted that in the above two classifiers, the support for 
the LDA output is [-inf, inf] while that for the ANN 
output is [0, 1]. Consequently, assumption of a 
binormal ROC curve would not be suitable for the 
ANN classifier, 

Contrary to LDA and ANN, k-means clustering 
does not transform the multivariate feature input into a 
univariate. This makes the construction of an ROC 
curve non-trivial. In the remaining of this Section, a 
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method in generating an ROC curve depicting the k-
means clustering performance is described. The 
method is a non-parametric method. It takes on any k-
means clustering output without making any 
assumptions of the distributions or density functions of 
the clusters. An iterative procedure is employed in 
order to obtain a number of  (tpf, fpf) ROC curve data 
points. The procedure is described as follows. 

 
1.  Apply k-means clustering with k = 2. 
2. Compute the fractions T1 and T2 of cirrhotic 

livers detected in clusters C1 and C2, 
respectively. 

3. Determine the true positive cluster by comparing 
T1 and T2, that is,  
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>=
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4.  Compute (tpf, fpf). 
5.  Relocate a point xi from C1 to C2 such that the 

change in J, as shown in Equation 1, is 
minimum. 

6. Compute (tpf, fpf). 
7. Repeat Step 5 - 6 until C1 becomes an empty 

cluster. 
8. Reinstate the k-means clustering results. 
9.  Relocate a point xi from C2 to C1 such that the 

change in J, as shown in Equation 1, is 
minimum. 

10. Compute (tpf, fpf). 
11. Repeat Step 9 - 10 until C2 becomes an empty 

cluster. 
 
Once all the (tpf, fpf) data points are obtained, the 

ROC curve can be generated by simply plotting the 
true positive fraction verses the false positive fraction. 
 
 
 
3. Results and discussions 
 
3.1. Number of clusters 
 

In determining the number of clusters k, a range of 
values were investigated. For each k, the k-means 
clustering algorithm was run 50 times. The best 
solution with the least sum of distances (Equation 1) 
was taken as the final solution for that particular k. 
Finally, the average silhouette index S(k) was used in 
assessing the cluster validity with different k. The 
average silhouette index with a range of k is shown in 
Figure 5. It can be seen that S(k) increases 
monotonically in the range k = 2, ...8. Consider the 
small size of the data set, dividing the data into as 

many as 8 clusters would mean that each cluster would 
contain a few data. The monotonic increase in S(k) in 
this scenario was thought to be due to the classes in the 
data are not well separated. Figure 5 also shows that 
there are two regions where the increase of S(k) is 
small. The two regions are from k = 2 to k = 3, and 
from k = 6 to k = 7. The small increase in S(k) indicates 
that the clusters are fairly stable. Due to the small 
number of samples in this study, the region with a 
smaller k, that is, k = 2 was taken as the optimal 
number of clusters. 
 
 

 
 

Figure 5. Plot of the average silhouette index S(k) for 
k = 2, 3, ... 8. 

 
 
 
3.2. Classification results 
 

Using k-means clustering and the proposed ROC 
curve generating method, the area under the ROC 
curve (AUC) was found to be 0.704 (Figure 5). 

In order to assess how well the unsupervised 
classifier performed in the classification task, the 
performance of the k-means clustering was compared 
to that of the LDA and an ANN using the same MRI 
feature data. For the LDA classifier, the resubsitition 
AUC index was found to be 0.781 (Figure 5) and the 
mean leave-one-case-out AUC index was found to be 
0.779 (range 0.760-0.821). For the ANN classifier, the 
results shown in Kato et al. [15] were used here. Using 
a separate 8 patient cases (not available to this study) 
for training the ANN and the same 44 patient cases as 
in this study for testing, an AUC of 0.801 was claimed 
in their study. 
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Figure 6. ROC curves obtained using k-means 
clustering and linear discriminant analysis (LDA). 
Resubstitution scheme was used in both situations. The 
area under the ROC curve (AUC) indices were 0.781 
for LDA and 0.704 for k-means clustering. 

 
 
4. Conclusions 
 

K-means clustering is an unsupervised classifier. 
The use of an unsupervised classifier eliminates the 
dependency of the class labels in the data but may be 
subjected to loss of information which could affect the 
goodness of the classifier. The 'goodness' of k-means 
clustering was assessed by comparing classification 
results with other commonly used classifiers including 
the LDA and an ANN. It was found that classification 
results using k-means clustering, the LDA and an ANN 
were found comparable. 

In addition, a procedure for generating a ROC curve 
in depicting the classification performance of k-means 
clustering was described. The use of ROC analysis for 
evaluation is becoming a trend for medical 
diagnosis/CAD schemes. The proposed ROC 
generating procedure enable k-means clustering to be 
evaluated against other classifier on a common ground. 
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