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The method has been validated using several ECG records from the
MIT-BIH arrhythmia database. None of the more complex cases re-
sult in sensitivity less than 98.10% and specificity of 100%, even for
ECGs with ambiguous waves. These results show that the developed
method provides a reliable and accurate detection of the fiducial points.
It outperforms the other algorithms and has an average detection ac-
curacy of 99.64% which is well within the acceptable range. In addi-
tion, through simple modifications, it would be robust to PQRST vari-
ations, which incorporates several pathological conditions. For highly
abnormal ECGs, where some of the fiducial points are missing, an ex-
perimental decision rule is used. This gives the opportunity to study
very low amplitude complexes, and therefore, it is suited for precise
ECG fiducial points detection.
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Automated Estimation of the Upper Surface of the
Diaphragm in 3-D CT Images
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Abstract—This communication describes a fully automated method by
which the position of the diaphragm surface can be estimated by deforming
a thin-plate model to match the bottom surface of the lung in CT images.
This method was applied to 338 X-ray CT scans, and its validity was proved
by the experimental results.

Index Terms—Computer-aided diagnosis (CAD), diaphragm, segmenta-
tion, three-dimensional (3-D) image processing, X-ray torso CT images.

I. BACKGROUND

Modern CT scanners can generate volumetric images with high spa-
tial resolution within 20 to 30 s; these images display the details of
the human body. Torso X-ray CT scans are widely used in clinical
medicine for lesion detection and surgical operations. However, it is te-
dious for radiologists to interpret such volumetric images that include
over 1000 transverse slices on a monitor or film. Computer-aided di-
agnosis (CAD) systems that can exhibit the 3-D anatomical structure
of the human body and determine the location of suspicious regions
are highly expected to reduce the tedium and increase the accuracy of
medical image interpretation.

Recognition of the anatomical structures of the human body is the
first step in the development of a CAD system. Further, for torso CT im-
ages, identification of the diaphragm and the subsequent division of the
torso into regions (chest and abdomen) is an important initial step for
anatomical structure recognition. Beichel et al. proposed a diaphragm
surface extraction approach using a semiautomatic process [1]. How-
ever, a fully automated process for diaphragm identification and body
cavity division is required for the development of a CAD system. In this
communication, we propose an automated scheme to locate the upper
surface of the diaphragm in noncontrast CT images, and we evaluate
its performance by using a large database of torso CT images.

II. METHODS

The diaphragm is located below the lungs and above the liver. The
shape of the diaphragm is not uniform and changes with breathing.
Moreover, it is composed of muscles that have a similar density (CT
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Fig. 1. Outline of the automated diaphragm estimation from CT images.

number) distribution as that in surrounding organs such as the liver,
heart, and spleen. Thus, it is difficult to identify the diaphragm based on
the CT value or its shape. Our proposed method estimates the location
and shape of the diaphragm based on the spatial relations between the
lung surfaces and the diaphragm; in this technique, a thin-plate model
is deformed to fit the bottom surface of the lung (shown in Fig. 1).
The process involves the three steps outlined in the following three
subsections.

A. Segmentation of the Lung Region

In a torso CT image, the various human tissue regions (a 3-D vol-
umetric matrix) are separated from the background (mainly air) by a
gray-level thresholding process. The thresholding value thair is auto-
matically determined by discriminant analysis of the CT number his-
togram [2]. Among the segmented air regions within the torso, a 3-D
connected component with the largest volume is selected as the initial
lung region, and it includes the airways of the trachea and the left and

right lung. The airways of the trachea and bronchus are then segmented
by a 3-D region growing method [3]. By eliminating the airway region
from the initial lung region, the left and right lungs become two iso-
lated regions without any 3-D connections and can be identified based
on connected-component labeling and selecting based on their center
coordinates and volumes [3].

B. Identification of the Diaphragmatic Lung Surface

The voxels on the lung surfaces are extracted by a 3-D surface tracing
process. On each voxel, the normal vector VVV of the lung surface is cal-
culated. The voxel PPP on the lung surfaces that satisfies the condition
f�(3=4)� < direction ofVVV onPPP < �(1=4)�g is regarded as the can-
didate voxel, and the largest connected component of the candidates on
the left/right lung surface is considered as the initial left/right diaphrag-
matic lung surface [Fig. 1(a)]. The region growing method is applied to
refine the initial result and identify the final diaphragmatic lung surface
[Fig. 1(c)].
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C. Estimation of the Position of the Diaphragm

Using a grid with regular intervals (3 mm) on the cross section of
the human body, subsample points on the grid are selected from the
diaphragmatic surfaces of the lung regions. A thin-plate model [Fig.
1(b)] is deformed to fit the subsample points on the diaphragmatic lung
surface [Fig. 1(d)] by using a 3-D thin-plate spline method [4]. The
initial thin-plate model is a 3-D binary image I(x; y; z) satisfied the
condition

fIf (const1 < z < const1 + const2) I(x; y; z) = 1;

else I(x; y; z) = 0g

where x; y; z are the spatial coordinate of lateral, anterior, and inferior
directions of human body. The deformed thin-plate model [Fig. 1(f)] in
the body cavity (extracted using a ball-kernel region growing method
[5]) provides the position of the diaphragm [Fig. 1(e)].

III. RESULTS AND DISCUSSION

To estimate the position of the diaphragm, we applied this method
to 338 patients (male: 210; female: 128; age: 12–89 years) who
underwent torso X-ray CT scans. CT images of each patient were
acquired with a multislice CT scanner (UltraSpeed of General Electric)
by using a common protocol (120 kV/Auto mA) without the use
of any contrast media. Each CT scan covered the entire human
torso with approximately 1000 slices, an isotopic spatial resolution
of approximately 0.6 mm, and a density (CT number) resolution
of 12 bits. The const1 and const2 of thin-plate model were set as
0 and 10. Fig. 1 shows an example of the original CT images and
the segmentation result. The mean value of thair in 338 cases was
�461.3 HU with a standard deviation of 10.6 after the application
of discriminant analysis [2], [3].

The accuracy of the diaphragm extraction was evaluated through
two stages by author H. Chen, who is a Medical Doctor specializing
in human anatomy with more than ten years’ experience. In the first
stage, the discrepancy e was estimated by the maximum distance be-
tween the extracted surface and the true diaphragm on the CT scans vir-
tually using a graphics user interface that could show the slice-by-slice
comparisons of the diaphragm recognition results with the original CT
images in three views (sagittal, coronal, and cross-sectional views) and
calculate the distance between two points on an image interactively.
The results were categorized into two groups: good (e <= th ) and
poor (e > th) with th fixed at 5 voxels due to a requirement for a
CAD system to be subsequently developed. It was found that 78.4%
(265/338) of the extractions were good, and 21.6% (73/338) were poor.
Some extractions were poor due to the impact of fluid accumulation
or inflammation between the diaphragm and the lungs. In the second
stage of the accuracy evaluation, the upper surfaces of the diaphragm
in 30 patients who were randomly selected from the group rated as
good were manually identified (manual sketching the upper surfaces
slice-by-slice on CT images and refining its shape in 3-D) by author
H. Chen as the ground truth for evaluations. The absolute values of the
shortest Euclidian distance between every point on the surface identi-
fied by author H. Chen and the surface extracted by the algorithm were
measured and an average value was taken as the error in each patient
case. The average error over 30 cases was 2.97 voxels, with a standard
deviation of 0.99. The computing time of the segmentation process is
about 15 min for one CT case using a computer (CPU: AMD Opteron
2.2 GHz). Comparing with the manual identification (1–2 CT cases/1
working day), our automated process could save the doctors a lot of
their time and energy.

The state of respiration during the CT scans influenced the shape
of the diaphragm in the CT images. Shape model-based segmentation
of the diaphragm [1] appeared to be sensitive to the respiration state
during the acquisition of the CT images. Instead of using a predefined
shape model, we used the bottom surface of the lung to directly deter-
mine the shape of the diaphragm in the CT images, and we avoided the
influence of the variation in the shape of the diaphragm that is caused by
respiration during the CT scan. Naturally, the usefulness of our method
is limited to the condition that the lung regions in the CT images are
normal.

IV. CONCLUSION

We proposed a fully automated method to estimate the position of
the upper surface of the diaphragm from noncontrast torso CT images.
This method was applied to 338 torso CT images, and the diaphragm
was successfully identified in 265 images. The validity and usefulness
of this method was demonstrated. We also confirmed that the results of
diaphragm recognition were useful for the identification of the anatom-
ical structure of the body cavity from CT images [5].
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