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ABSTRACT 

Cirrhosis of the liver is a chronic disease. It is characterized by the presence of widespread nodules and fibrosis in 
the liver which results in characteristic texture patterns. Computerized analysis of hepatic texture patterns is usually 
based on regions-of-interest (ROIs). However, not all ROIs are typical representatives of the disease stage of the 
liver from which the ROIs originated. This leads to uncertainties in the ROI labels (diseased or non-diseased). On 
the other hand, supervised classifiers are commonly used in determining the assignment rule. This presents a 
problem as the training of a supervised classifier requires the correct labels of the ROIs. The main purpose of this 
paper is to investigate the use of an unsupervised classifier, the k-means clustering, in classifying ROI based data. 
In addition, a procedure for generating a receiver operating characteristic (ROC) curve depicting the classification 
performance of k-means clustering is also reported. Hepatic MRI images of 44 patients (16 cirrhotic; 28 non-
cirrhotic) are used in this study. The MRI data are derived from gadolinium-enhanced equilibrium phase images. 
For each patient, 10 ROIs selected by an experienced radiologist and 7 texture features measured on each ROI are 
included in the MRI data. Results of the k-means classifier are depicted using an ROC curve. The area under the 
curve (AUC) has a value of 0.704. This is slightly lower than but comparable to that of LDA and ANN classifiers 
which have values 0.781 and 0.801, respectively. Methods in constructing ROC curve in relation to k-means 
clustering have not been previously reported in the literature. 
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1. INTRODUCTION 
Cirrhosis of the liver is one of the leading causes of death by disease, killing more than 20,000 people in the 

United States each year. Cirrhosis of the liver is characterized by the presence of widespread fibrosis and 
regenerative nodules in the liver. The fibrosis and nodules formation causes distortion of the normal liver 
architecture, resulting in characteristic texture patterns. Though presented with great potential, interpretation of 
texture patterns is a challenge for human observers. This calls for the interest in machine analysis of hepatic texture 
patterns. 

 
Texture analysis for computer-aided diagnosis (CAD) in medical images has been studied in many disciplines 

including the diagnosis of breast cancer in mammograms [1-5], lung nodules in chest radiographs [6-8], 
osteoporosis in bone x-ray images [9-11], and abnormalities in kidney and liver [12-14]. Analysis is typically based 
on regions-of-interest (ROIs). A classifier is then subsequently used to classify the data (feature vectors) into a 
number of pre-defined classes. Linear discriminant analysis (LDA), artificial neural network (ANN) and support 
vector machine (SVM) are among the popular choices of classifiers. The above named classifiers are in the category 
of supervised classifier which employs a training data set (with known class labels) for training the classification 
rule.  
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Problem in diagnosing abnormalities using a scheme involving ROIs and supervised classifier is that a sampled 
ROI may or may not contain the features that typically represent the disease stage of the organ/structure from which 
the ROI originated. Yet, disregard of its disposition, the ROI will be given the same label as any other ROI from 
that organ/structure. If a supervised classifier is subsequently used, the uncharacteristic ROI will constitute an 
outlier and will have an influence in the training of the classifier.  

 
In this paper, classification of livers as cirrhotic or non-cirrhotic based on texture features measured on ROIs is 

studied with the use of a different type of classifier, the unsupervised classifier. An unsupervised classifier differs 
from a supervised classifier in two ways: (1) it works with unlabeled data, and (2) training of a classification rule 
with the use of a training data set is not required.  K-means clustering is a simple and popular unsupervised 
classifier and is chosen for this study. The ROI texture feature data employed in this study is a subset of the data set 
reported in Kato et al. [15].  

 
In addition, a method for generating an ROC curve in depicting the classification performance of k-means 

clustering is also described in this paper. Receiver operating characteristic (ROC) analysis [16] is widely used for 
evaluating performance of classification/CAD schemes, however, schemes employing k-means clustering typically 
attain only a single measure of sensitivity and specificity. In order to enable full comparisons between classification 
schemes employing k-means clustering and those employing other classifiers, an ROC curve generation method for 
k-means clustering is developed.  

 
Finally, with the use of the above ROC curve generating method, the classification results using k-means 

clustering are compared with the classification results using a classical LDA classifier and an ANN classifier, with 
the former computed in this study and the latter obtained from Kato et. al. [15]. 
 
 

2. METHODOLGY 

This section describes a k-means clustering algorithm and the proposed method in generating ROC curve associated 
with k-means clustering. The k-means clustering algorithm partitions the data of interest, hepatic ROI data in this 
study, into a number of k clusters. The determination of the number of clusters, k, is based on the silhouette index.  

2.1. K-means clustering 
 
Among a number of unsupervised learning algorithms, K-means clustering is simple and is one of the most popular 
algorithms. As mentioned before, the main differences between a supervised classifier and an unsupervised 
classifier is that a training data set with known class labels is required for the former to train the classification rule, 
whereas such a training data set and the knowledge of the class labels in the data set are not required for the latter. 
This makes it most suitable when there are uncertainties in the class labels.   
 
2.1.1. The algorithm 
 
The k-means clustering algorithm partitions a given data set into k mutually exclusive clusters such that the sum of 
the distances between data and the corresponding cluster centroid is minimized. The above distance measure 
between two data points is taken as a measure of similarity. A number of distance measures can be used depending 
on the data. The Minkowski distance, the Euclidean distance and the Mahalanobis distance are some typical 
examples of distance measures. In this study, the standard Euclidean distance was used as the distance measure. 
 

Mathematically, given a set of data vectors X = [x1, ..., xn] where n is the number of observations, the k-means 
clustering algorithm groups the data into k clusters with the aim at minimizing an objective function, a squared error 
function. As the Euclidean distance was adopted as the distance measure in this study, the objective function J is 
then explicitly given as  
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where cj is the j-th cluster and µj, is the centroid of  the cluster cj . Therefore, the k-means clustering algorithm is an 
iterative algorithm that finds a suitable partition which minimizes the sum squared error. The algorithm begins with 
the initialization of k cluster centroids. Different approaches in initialization have been suggested. A simple method 
is to initialize the problem by randomly select k data points from the given data. The remaining data points are 
classified into the k clusters by distance. The centroids are then updated by computing the centroids in the k 
clusters. As in other optimization problems with a random component, the results of k-means clustering are 
initialization dependent. This is usually dealt with by running the algorithms several times, each with a different 
initialization. The best solution from the multiple runs is then taken as the final solution.  

 
 

2.1.2. Determining the number of clusters 
 
The k-means clustering algorithm requires the knowledge of k, the number of clusters. Unfortunately, this is usually 
not known a prior. Furthermore, real data are often corrupted with noise and the clusters in real data sets are often 
not well separated. As a result, the data set can be interpreted with several possible numbers of clusters. This means 
determining the number of clusters is an ill-posed problem. Nevertheless, a number of approaches have been 
suggested in finding the number of clusters. Here, the number of clusters is determined by assessing the 'quality' of 
the clustering results over a range of k. 
 

In this study, the silhouette index was employed as a cluster validity index. A silhouette index was defined on 
each and every data point (feature vector) in the feature space. The silhouette index of the i-th data point is given by  
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where ai is the average distance of the i-th point to other points in the same cluster and bi is the average distance of 
the i-th point to points in its nearest neighbour cluster. The silhouette index indicates how well a data point is 
clustered. In particular, the silhouette index Si is a normalized difference measure of the average distance of the i-th 
point to all other points in the same cluster and that of the i-th point to all other points in the closest cluster with 
distance being the Euclidean distance. The value of the silhouette index Si ranges from +1 to -1. A value of unity 
indicates that the point is very distant from its neighbor clusters while a value of -1 indicates that the point is closer 
to points in its nearest neighbor cluster than to those in its own cluster.  
 

An average silhouette is obtained by averaging the silhouette values over the number of data points. The 
average silhouette  
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is an index measuring the overall 'quality' of the partition where Si is the silhouette index defined in Equation 2 and 
N is the number of observations. Similar to the point silhouette index, a high value in the average silhouette 
indicates the 'quality' of the partition is good. Furthermore, the number of clusters, k, is a parameter of the average 
silhouette. The number of clusters can be determined by maximizing S(k) over a range of k. 
 

2.2. ROC curve 
 
ROC analysis [16] is widely used in evaluating CAD schemes or classification results. An ROC curve is a plot of 
the true positive fraction (tpf) verses the false positive fraction (fpf). The true positive fraction is sometimes referred 
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to as the hit rate, detection rate or probability of detection while the false positive fraction is sometimes referred to 
as the false alarm rate. In other words, the ROC curve depicts the trade-off between sensitivity and specificity, 
where sensitivity is, yet, another term for true positive fraction and specificity is the unit complement of false 
positive fraction (1-fpf).   
 

2.2.1. Typical ROC curve 
 
In this paper, the term typical ROC curve refers to the ROC curve constructed with the assumption that all 
observations can be represented by a single univariate random variable, X. It is the ROC curve that readers are 
familiar with [16]. Consider two groups, G0 and G1 where G0 is the non-diseased group occupying the lower end of 
the univariate axis and G1 is the diseased group occupying the higher end of the axis, the probability distribution of 
X conditional on group Gi is denoted by fi and their corresponding cumulative distribution by Fi where i = 1, 2. For 
continuous random variable X, the true positive fraction and the false positive fraction are given by 
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where F0

-1 is defined by F0
-1 F0 = 1. As the distributions of the two groups are usually not known a priori, the ROC 

curve C(x) is commonly estimated by estimating F0 and F1 with appropriate distribution models (parametric 
estimator) or their respective empirical distributions (non-parametric estimator).  
 

For multivariate observations, commonly used classifier such as a linear discriminant function or an artificial 
neural network will transform the multivariate observations into univariates. Distribution of the transformed 
univariate can then be estimated as described in the above. The probability density functions of the transformed 
univariates are the underlying curves from which the ROC curve is generated. In particular, if a linear discriminant 
function is used in the transformation, the transformed value is often referred to as the discriminant score. 
Furthermore, this univariate random variable is also called the decision-variable as the decision of an observation 
belonging to one group or the other is based upon a threshold value of this variable (Figure 1). 

 

 
 
 

Figure 1. The underlying probability density functions that generate an ROC curve. 
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Outputs of classifiers such as a linear discriminant analysis (LDA) and artificial neural network (ANN) are 
univariates, hence, ROC curve construction is straightforward. However, it should be noted that in the above two 
classifiers, the support for the LDA output is [-inf, inf] while that for the ANN output is [0, 1]. Consequently, 
assumption of a binormal ROC curve would not be suitable for the ANN classifier. 

 
 

 
2.2.2.  ROC curve for k-means clustering 
 
Contrary to commonly used classifiers such as LDA and ANN, k-means clustering does not transform the 
multivariate feature input into a univariate. This makes the construction of an ROC curve non-trivial. In the 
remaining of this Section, a method in generating an ROC curve depicting the k-means clustering performance is 
described. The method is a non-parametric method. It takes on any k-means clustering output without making any 
assumptions of the distributions or density functions of the clusters. An iterative procedure is employed in order to 
obtain a number of  (tpf, fpf) ROC curve data points. The procedure is described as follows. 
 
############################################################################## 
1.  Apply k-means clustering with k = 2. 
2. Compute the fractions T1 and T2 of cirrhotic livers detected in clusters C1 and C2, respectively. 
3. Determine the true positive cluster by comparing T1 and T2, that is,  
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4.  Compute (tpf, fpf). 
5.  Relocate a point xi from C1 to C2 such that the change in J, as shown in Equation 1, is minimum. 
6. Compute (tpf, fpf). 
7. Repeat Step 5 - 6 until C1 becomes an empty cluster. 
8. Reinstate the k-means clustering results. 
9.  Relocate a point xi from C2 to C1 such that the change in J, as shown in Equation 1, is minimum. 
10. Compute (tpf, fpf). 
11. Repeat Step 9 - 10 until C2 becomes an empty cluster. 
################################################################################ 

 
 
Once all the (tpf, fpf) data points are obtained, the ROC curve can be generated by simply plotting the true 

positive fraction verses the false positive fraction. 

 

3. EXPERIMENTAL DATA 

 
MRI data of 44 patient cases (16 cirrhotic; 28 non-cirrhotic) were used in this study. The data is a subset of a 
database reported in a study by Kato et al. [15]. The 44 patients were identified from the archive of Gifu University 
Hospital, Japan in a retrospective study. All the 44 patients had partial hepatectomy for malignant hepatic lesions in 
the period between February 2000 and January 2002 with preoperative evaluations of hepatic tumors using 
gadolinium-enhanced MRI performed within 2 weeks prior to surgery. Diagnoses among the 44 patients were 
hepatocellular carcinoma in cirrhosis, hepatocellular carcinoma in chronic viral hepatitis type C or type B, 
cholangioccllular carcinoma and liver metastasis. Surgical specimens were retrospectively examined by a 
pathologist who was blinded to patient histories and radiology and surgery reports. The degree of hepatic fibrosis 
(Figure 2) in non-tumorous liver parenchyma was evaluated using the 5-point Desmet scale [17] with F0 indicates 
no fibrosis; F1, mild fibrosis; F2, moderate fibrosis; F3, severe fibrosis; and F4, cirrhosis. For the evaluation of a 
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two-class CAD scheme employed in Kato et al. [15], livers with pathologic grades of F3 and F4 were taken as true 
positives (cirrhotic livers) and livers with pathologic grades F0-F2 were taken as true negatives (non-cirrhotic 
livers), resulting in a total of 16 true positives and 28 true negatives. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

The preoperative hepatic MRI images were acquired using a 1.5T MR scanner (Signa Horizon; GE Medical 
Systems, Milwaukee, Wis.). MRI images of several sequences were obtained including T1- and T2-weighted MRI 
as well as gadolinium-enhanced pre-contrast, hepatic arterial, portal venous and equilibrium phases MRI. All MRI 
images were acquired in the axial plane. The depth resolution of the images was 16 bits (65536 gray scale levels) 
and the size of the axial images was 512 × 512 pixels with a section thickness of 8-10 mm and a 2- to 3-mm 
intersection gap. Depending on the size of the coverage, a MRI sequence of a patient typically consisted of a stack 
of 18-22 (axial) slice images. 

 
Only the gadolinium-enhanced equilibrium phase images were of interest in this study. This is due to the 

findings in Kato et al. [15] that performance of the 7 texture features extracted from the gadolinium-enhanced 
equilibrium phase image is superior to that extracted from other MRI sequence or combination of sequences. From 
the equilibrium phase images of each patient, 10 ROIs were selected by a radiologist who was blinded to the patient 
information and the pathologic diagnosis. The ROIs were 32 × 32 pixels in size and were placed in the liver 
parenchyma. Care was taken to avoid large blood vessels, focal hepatic lesions and prominent hepatic artifacts. The 
locations of the ROIs were planned to cover the liver strategically with eight in the right liver lobe (typically, two in 
each of Couinaud's liver segments V, VI, VII and VIII [18]) and two in the left lobe (typically, one in each of 
Couinaud's liver segments II and III). The seven texture features were contrast, angular second moment, entropy, 
mean and inverse difference moment derived from co-occurrence matrix [19] as well as the mean and standard 
deviation derived from the image intensity histogram.  
 

4. RESULTS 

4.1. Number of clusters k  
 
A range of values were investigated in finding the most appropriate k value. For each candidate k value, the k-means 
clustering algorithm was run 50 times. The best solution with the least sum of distances (Equation 1) was taken as 
the final solution for that particular k. Finally, the average silhouette index S(k) was used in assessing the cluster 
validity with different k. The average silhouette index with a range of k is shown in Figure 3. It can be seen that S(k) 
increases monotonically in the range k = 2, ...8. Consider the small size of the data set, dividing the data into as 
many as 8 clusters would mean that each cluster would contain a few data. The monotonic increase in S(k) in this 
scenario was thought to be due to the classes in the data are not well separated. Figure 3 also shows that there are 
two regions where the increase of S(k) is small. The two regions are from k = 2 to k = 3, and from k = 6 to k = 7. 
The small increase in S(k) indicates that the clusters are fairly stable. Due to the small number of samples in this 
study, the region with a smaller k, that is, k = 2 was taken as the optimal number of clusters. 

Degree of Fibrosis 
- + 

                                 Figure 2. Different degree of fibrosis ranging from the very mild (left) to the very severe (right). 
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Figure 3. Plot of the average silhouette index S(k) for k = 2, 3, ... 8. 
 
 

4.2. Classification using k-means clustering 
 
An ROC curve depicting the performance of the unsupervised k-means clustering algorithm is shown in Figure 4. 
Area under the ROC curve (AUC) was found to be 0.704. The ROC curve was constructed using the method 
proposed in this paper. For comparison, classification performances using two other classifiers, LDA and ANN, 
were also investigated. The AUC was found to be 0.781 for a LDA classifier using all cases for testing and training.  
For an ANN classifier, an AUC of 0.801 was claimed in Kato et al. [15]. The results was achieved using a second 
dataset of 8 patient cases (not available to this study) for training the ANN and the same dataset of 44 patient cases 
employed in this study for testing the classifier. 
 

 
 

Figure 4. ROC curves obtained using k-means clustering and linear discriminant analysis (LDA). All cases were used for 
training and testing in obtaining the two ROC curves. The area under the ROC curve (AUC) has a value of 0.781 for LDA and 
0.704 for k-means clustering. 
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5. DISCUSSION AND CONCLUSION 
 
The classification results obtained using a k-means classifier was depicted in an ROC curve. The performance of 
the classification was compared to that of two commonly used supervised classifiers, namely, the LDA and the 
ANN by comparing the AUCs. The AUC obtained using the unsupervised classifier was found to be slightly lower 
than that of the LDA and ANN. This could be due to the reduced amount of information presented to the k-means 
classifier. The use of an unsupervised classifier, on the one hand, eliminates the dependency of the ROI labels 
which may be subjected to error due to sampling. On the other hand, ignoring the ROI label could mean loss of 
information and could affect the classification results had the labels be correct.  
 

Quantitative comparison of the three ROC curve obtained using k-means classifier, LDA and ANN should be 
performed in order to assess if the apparent difference in the three AUC values is statistically significant. Method in 
comparing ROC curves is well-known [Hanley]. However, the method assumes that the ROC curve is generated 
based on two univariate probability distributions which is not the case for the ROC curve associated with k-means 
clustering. Methods in comparing the k-means clustering ROC curve with other ROC curves are being investigated. 
 

Only a single sensitivity value and a single specificity (i.e. one data point on an ROC curve) are usually 
available in indicating the performance of a scheme/algorithm associated with a k-means classifier. In order to have 
a full analysis of the performance and be able to compare with other schemes/algorithms, the generation of ROC 
curves is necessary. Methods in generating ROC curves associated with k-means clustering have not been 
previously reported in the literature. A procedure for generating such ROC curves was described in this paper. The 
use of ROC analysis for evaluation is becoming a trend for medical diagnosis/CAD schemes. The proposed ROC 
generating procedure enables k-means clustering to be evaluated against other classifier on a common ground. 
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