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ABSTRACT

The detection of unruptured aneurysms is a major subject in magnetic resonance angiography (MRA). However,
their accurate detection is often difficult because of the overlapping between the aneurysm and the adjacent vessels
on maximum intensity projection images. The purpose of this study is to develop a computerized method for
the detection of unruptured aneurysms in order to assist radiologists in image interpretation. The vessel regions
were first segmented using gray-level thresholding and a region growing technique. The gradient concentration
(GC) filter was then employed for the enhancement of the aneurysms. The initial candidates were identified in
the GC image using a gray-level threshold. For the elimination of false positives (FPs), we determined shape
features and an anatomical location feature. Finally, rule-based schemes and quadratic discriminant analysis
were employed along with these features for distinguishing between the aneurysms and the FPs. The sensitivity
for the detection of unruptured aneurysms was 90.0% with 1.52 FPs per patient. Our computerized scheme can
be useful in assisting the radiologists in the detection of unruptured aneurysms in MRA images.

Keywords: Magnetic resonance angiography (MRA), Unruptured aneurysm, Gradient concentration filter,
Anatomical location.

1. INTRODUCTION

Cerebrovascular diseases are the third leading cause of death in Japan." Therefore, a screening system for the
early detection of cerebral and cerebrovascular diseases, named Brain Check-up, is widely used in Japan. Because
of the recent progress of magnetic resonance imaging (MRI), various types of cerebral diseases such as lacunar
infarct, unruptured aneurysm, occlusion, and stenosis were detected in this screening system. Therefore, we
developed computer-aided diagnosis (CAD) schemes for the detection of lacunar infarcts, unruptured aneurysms,
and occlusions®™® in order to assist radiologists in image interpretation by the radiologists who use the computer
outputs as a guide.

1

The detection of unruptured aneurysms in magnetic resonance angiography (MRA) studies is an important
task because aneurysm rupture is the main cause of subarachnoid hemorrhage. However, it is often difficult for
the radiologists to detect small aneurysms in the MRA studies because of the overlap between an aneurysm and
the adjacent vessels on maximum intensity projection (MIP) images. Therefore, several CAD schemes for the
detection of unruptured aneurysms in MRA studies have been reported.* 7' In these schemes, shape features
were generally used for distinguishing between the aneurysms and the normal vessels. It should be noted that
unruptured aneurysms were often detected in the anterior communicating artery, branch points of middle cerebral
artery, and branch points between the internal carotid artery and the posterior communicating artery. Therefore,
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Figure 1. Overall scheme for the detection of unruptured aneurysms in 3D MRA images.

the anatomical location is an important information for the detection of unruptured aneurysms. However, there
have been no reports on this method for the detection of unruptured aneurysms on the basis of anatomical
location information.

In this study, we propose a method using the anatomical location feature for the detection of unruptured
aneurysms. To obtain the anatomical location information, we employ an image registration technique along
with a reference image so that the differences due to variations in the positioning of a patient can be adjusted.
The adjusted locations in a common coordinate are used as the anatomical location feature. We will investigate
the detection performance of our CAD schemes with and without anatomical location features and demonstrate
the usefulness of anatomical location features for the detection of unruptured aneurysms in MRA images.

2. MATERIAL

A database consists of 100 MRA studies, including 72 normal and 28 abnormal with 30 unruptured aneurysms
(diameter: 2.3 to 3.5 mm; mean: 2.8 mm). Eighteen of these MRA studies were performed using a 1.5 T magnetic
image scanner (a Signa Excite Twin Speed 1.5 T; GE Medical Systems) at the Gifu University Hospital (Gifu,
Japan). Each of these MRA studies includes 50 to 140 slice images. The axial slice images have a fixed size of
256 x 256 pixels, and the size of the pixels ranges from 0.625 mm to 0.78 mm. The thickness of each slice is in
the range of 0.5 mm to 1.2 mm. The remaining 82 MRA studies were performed using a 1.5 T magnetic image
scanner (Symphony; STEMENS) at Gero Hot Springs Hospital (Gero, Japan). Each MRA study involves 72 to
80 slice images. The axial slice images have a size of either 256 x 192 or 256 x 176 pixels. Despite a slight
variation in the image size, the axial slice images in all the 82 cases have the same pixel size and slice thickness
of 0.7 mm and 1 mm, respectively. All the 100 studies were conducted by using a 3D time-of-flight technique.
The acquired MRA data were subsequently converted to isotropic volume data by using linear interpolation.
The size of the converted 3D volume data is 400 x 400 x 200 voxels, and the size of each voxel is 0.5 x 0.5 x
0.5 mm?. The obtained isotropic volume data were employed in this study.

3. METHOD
3.1 Segmentation of Vessel Region

Figure 1 shows the overall scheme for the detection of unruptured aneurysms in MRA images. In order to
avoid the false positives (FPs) located outside the vessel region, we first segmented the vessel regions. A linear
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gray-level transformation was applied to the 3D MRA image so that the minimum voxel value became zero, and
voxels with values greater than the 99% margin depicted in a cumulative histogram were assigned a maximum
value of 1024. After the linear gray-level transformation, the vessel regions were segmented from the background
by using the gray-level thresholding method with a threshold level of 700, which was selected empirically. Using
this method, large vessels regions were successfully segmented. However, it was difficult to segment small vessels
using this method because the voxel values in the small vessel regions were low. Therefore, a region growing
technique was subsequently applied to segment the small vessel regions. The segmented large vessel regions were
used as "seed” points, and the neighboring voxels with values greater than 500 were appended to the seed points.

3.2 Determination of Initial Aneurysm Candidates

For the enhancement of aneurysms, we applied a 3D gradient concentration (GC) filter'!:12 for the segmented
vessel regions. This filter was designed to enhance the regions of a sphere by measuring the degree of convergence
of the gradient vectors around a point of interest, which is defined by

GC(p) = % > cosb; (1)
R

The output value of the GC filter at the point of interest p(z,y, z) was computed within the regions of a sphere
with a radius R at the center of p(z,y,2). R was 5 voxels in this study. M is the number of voxels when the
gradient magnitude located at j(z,y, z) was greater than zero. The angle 6; is the angle between the direction
vector from p(z,y, z) to j(x,y, z) and the gradient direction vector located at j(z,y, z). The gradient magnitude
and gradient direction were determined by the first-order difference filter with a matrix size of 3 x 3 x 3. For
the identification of the initial aneurysm candidates, the gray-level thresholding technique with a threshold level
of 0.5 was applied to the image obtained using the GC filter. After thresholding, we determined the initial
candidates as the regions with a size larger than 10 voxels.

3.3 Features for Eliminating FPs

Using the techniques described in the previous section, almost all the aneurysms were detected accurately.
However, the initially selected candidates also include many FPs. For eliminating these FPs, we used shape
features and anatomical location features for distinguishing between the aneurysms and the FPs.

3.3.1 Shape Features

We used four features as the shape features, i.e., the size, degree of sphericity, and mean and maximum values of
the GC image. The size was given as the number of voxels in the regions of the initial aneurysm candidate. The
size may be useful a feature for eliminating the FPs because the sizes of some FPs were smaller or larger than
those of the aneurysms. The degree of sphericity, which is defined by the fraction of the overlap volume of the
candidate with a sphere having the same volume as the candidate, may also be a useful feature for distinguishing
between the vessels and the aneurysms because some FPs were line-like or more irregular in comparison to
the aneurysms. However, the degree of sphericity used in this study cannot find small dot-like objects such as
aneurysms because it is difficult to quantify the shape of the surface accurately when the size of candidate is
small. Thus, we used the mean and maximum values of the GC image in the candidate regions.

3.3.2 Anatomical Location Features

In order to obtain the anatomical location features, a reference (normal) MRA image was obtained by using
the above-mentioned MR, scanner at Gifu University Hospital. The acquired MRA images were subsequently
converted to isotropic volume data by using linear interpolation. The vessel regions in the reference image were
then semi-manually segmented for the image registration.

The segmented vessel regions in the target image were shifted to align with the reference image by using a
global matching procedure and rigidity transformation. After the rigidity transformation, the locations x, y, and
z in the target image were shifted into the common coordinate onto the reference image, thereby providing the
anatomical location information.
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Figure 2. Illustration of global matching. The segmented vessel regions in a target 3D MRA image (white color) are
superimposed onto the MIP image of the reference 3D MRA image (gray color): (a) Before global matching and (b) after
global matching.

Global Matching

As the locations of the corresponding vessel regions in the target MRA image and the reference image are likely
to be different due to the variations in the positioning of the patient, the registration of the corresponding
vessel regions is necessary. Global matching was used for the initial image registration. In the global matching
procedure, the translation vector was defined so as to maximize the overlapping of the vessel regions in the
target image and reference image. Figure 2 shows the efficacy of global matching. By using this technique, the
corresponding vessel regions in the two images were brought close to each other.

Corresponding Control Points

After the global matching procedure, rigidity transformation'® was used to achieve a more accurate matching
between the target image and the reference image. Twelve control points were pre-determined in the reference
image, and the template matching method was used to determine the locations of the corresponding control
points in the target image. In the template matching procedure, the normalized cross-correlation value C' was
used as a similarity measure. The cross-correlation between the template A(i, j, k) containing a pre-determined
feature point on the reference image and a region B(i,j, k) containing a candidate corresponding to a feature
point on the target image is given by
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Here, @ and o4 are the average voxel value and standard deviation of template, respectively. The size of the
template I x J x K was set to be 21 x 21 x 21 . The normalized cross-correlation value indicates the resemblance
between the reference and the template. If the images A(7,j, k) and B(i,J, k) are identical, C' takes the value
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1.0. Twelve templates were manually located in the cerebral region of the reference image. Figure 3 (a) shows
the center points of the twelve templates in black dots. The search region associated with each template in the
target image had a size of 41 x 41 x 41 . A set of coordinates of the corresponding points between the reference
and the target images was determined by finding the largest cross-correlation value. Figure 3 (b) shows the 12
corresponding points found in the target image using the template matching method.

Rigidity Transformation

By using a set of corresponding control points determined by the template matching method, the translation
and rotation vectors ( T' and R, respectively) were determined for the two images for rigidity transformation.
Let P and p represent the corresponding points in the reference and the target images, respectively. Assuming
that coordinates of the corresponding points in the images after global matching are {p; = (zi,yi,2i), P; =
(X:,Y5,Z;) i =1,---,12}, the relation between the corresponding points in the images can be written as

P, =Rp;+1T. (6)

T and R can be determined by minimizing
P
E*=)"||P,— (Rp; + )|I*. (7)
i=1

An efficient algorithm was proposed for determining T and R in the reference.!* In this algorithm, the rotation
matrix is obtained first by minimizing

P
B =Y |lQ: — Rigil*, (8)
i=1

where Q; = P; — P, ¢; = p; — p, and P and p are the centers of gravity of the control points in the reference and
target images, respectively. Further, considering the rotation matrix, 7" is determined using

T =P — Rp. (9)

After rigidity transformation, the locations z, y, and z in the deformed target MRA image were shifted into
the common coordinates on the reference image. The location on the reference image provides the anatomical
location information.

3.3.3 Elimination of FPs

By applying the methods described in the previous sections to all the MRA images in our database, four shape
features and three anatomical location features were obtained. The rules in our rule-based schemes were then set
by using these values. First, we calculated the maximum and minimum values of each of these features obtained
from all the aneurysms. All the 14 cutoff thresholds were determined on the basis of these values. The rule-based
schemes were then used for the first step in the elimination of FPs, i.e., when a candidate was located outside
the range determined by the cutoff thresholds in the feature space, the candidate was considered as an FP.

For further eliminating the FPs, we employed a quadratic discriminant analysis (QDA)'® using four shape
features and three location features. The QDA generates a decision boundary that optimally partitions the
feature space into two classes, i.e., an aneurysm class and FP class. The decision boundary for the QDA was a
quadratic surface given by a discriminant function. The output value of the discriminant function indicates the
likelihood of the occurrence of the aneurysm. Thus, we can classify the aneurysm candidates into true positive
class and FP class by partitioning the feature space using the threshold level of the discriminant function.
By changing the threshold level, we can determine the performance for the detection of aneurysms using our
computerized scheme.
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Figure 3. Corresponding control points for rigidity transformation. (a) The center points of the 12 templates (black dots)
projected onto the MIP image of the reference MRA study. (b) Corresponding point (black dots) in the MIP image of
the target MRA study were located using the template matching method. Square boxes indicate the search areas for
individual control points.

4. RESULTS

Our method was applied to 100 clinical cases. As the first step toward identifying the initial candidates for
aneurysms, 93.3% (28/30) aneurysms were accurately detected with 27.32 (2732/100) FPs per patient. This
result indicated that the GC filter was useful in the detection of aneurysms because almost all the aneurysms
were detected accurately. However, many FPs were also detected using this method.

For the elimination of the FPs, we determined four shape features and three location features. By using rule-
based schemes with these features, our CAD scheme obtained a sensitivity of 90.0% (27/30) with 7.00 (700/100)
FPs per patient. Thus, 74.4% of the FPs were eliminated using this scheme. This result indicates that the
features determined in this study were useful for distinguishing between the aneurysms and the FPs.

For the further elimination of the FPs, a QDA with the same features was employed for distinguishing between
the aneurysms and the FPs. The results revealed that our CAD scheme achieved that the same sensitivity of
90.0% (27/30) with 1.52 (152/100) FPs per patient. In order to investigate the usefulness of location features,
we also calculated the detection performance of our CAD scheme without the location features. Figure 4 shows
the free-response receiver operating characteristic (FROC) curves'® for the overall performance of the detection
of aneurysms with and without location features. The graphs show that the number of FPs decreased from 3.47
(without location features) to 1.52 (with location features) while maintaining a sensitivity of 90.0%. Thus, we
believe that location features was useful for distinguishing between the aneurysms and the FPs.

5. CONCLUSIONS

We developed a computerized method for the detection of unruptured aneurysms in MRA images by using
location features. The sensitivity of the detection of aneurysms was 90.0% with 1.52 FPs per patients. Therefore,
our computerized scheme could be useful in assisting the radiologists in correctly identifying the aneurysms and
for reducing the time required for interpretation.

ACKNOWLEDGMENTS

This work was partly supported by a grant for the Knowledge Cluster Creation Project from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.

Proc. of SPIE Vol. 6915 69151Q-6



100%

90% » -

+\ With location features

Without location features

80%

70%

60%

50%

40%

Sensitivity

30%

20%

10% [

0%
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Number of FPs per patient

Figure 4. FROC curves for the overall performance of our computerized scheme in the detection of aneurysms in MRA
images with and without location features.
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