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Abstract In this study, we developed an automatic

extraction scheme for the precise recognition of the con-

tours of masses on digital mammograms in order to

improve a computer-aided diagnosis (CAD) system. We

propose a radial-searching contour extraction method

based on a modified active contour model (ACM). In this

technique, after determining the central point of a mass by

searching for the direction of the density gradient, we

arranged an initial contour at the central point, and the

movement of a control point was limited to directions

radiating from the central point. Moreover, it became

possible to increase the extraction accuracy by sorting out

the pixel used for processing and using two images—an

edge-intensity image and a degree-of-separation image

defined based on the pixel-value histogram—for calcula-

tion of the image forces used for constraints on

deformation of the ACM. We investigated the accuracy of

the automated extraction method by using 53 masses with

several ‘‘difficult contours’’ on 53 digitized mammograms.

The extraction results were compared quantitatively with

the ‘‘correct segmentation’’ represented by an experienced

physician’s sketches. The numbers of cases in which the

extracted region corresponded to the correct region with

overlap ratios of more than 81 and 61% were 30 and 45,

respectively. The initial results obtained with this tech-

nique show that it will be useful for the segmentation of

masses in CAD schemes.
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1 Introduction

Many techniques have been proposed for computer-aided

diagnosis (CAD) in mammography, and several commer-

cial (FDA-approved) CAD systems have been developed

[1–3]. Most of them are systems for the detection of masses

and clustered microcalcifications on mammograms. We are

in the process of developing a CAD system for mammo-

grams aimed at the automatic detection of masses [4, 5],

architectural distortions [6], and clustered microcalcifica-

tions [7], characterization of their malignancy, and

retrievals of similar cases [8].

In many CAD schemes for mammographic masses,

features such as the shape, density, and contrast are com-

puted from regions of mass candidates detected by a

detection algorithm. Because radiologists closely observe

the contours of masses when diagnosing the mammo-

grams, the vital feature of a CAD system is its ability to

evaluate the information conveyed by the contours. It is

essential that the contours be extracted with a high degree
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of accuracy because the results obtained from the contour

extraction in CAD schemes significantly affect a system’s

performance. To date, some techniques for the accurate

contour extraction of masses have been reported [9–14]. Li

et al. [9] used the Markov random-field model to detect

masses. Petrick et al. [10] developed an adaptive contrast

enhancement segmentation method to extract lesions.

Kupinski and Giger [11] proposed a radial gradient index-

based algorithm and a probabilistic algorithm that were

seeded segmentation algorithms. However, because many

masses often overlap with normal tissues, one of the issues

that must be addressed is the more accurate and robust

contour extraction in the case of masses that have partly

indistinct contours. Sahiner et al. [14] applied an active

contour model to the contour extraction of mammographic

masses and quantitatively compared the results of the

extraction with the manual segmentation performed by two

radiologists. Consequently, the extents of area overlap in

the results obtained by the two radiologists and the results

obtained by a computer and the radiologists were 0.76 and

0.74, respectively. Despite the high extraction accuracy,

fine irregularities in the contour were not extracted.

Moreover, the extraction results were not very accurate

and were unsuitable for shape recognition of the contour in

our classification scheme, which analyzes the contours of

benign and malignant masses by detecting the subtle

sawtooth region of the mass contour. Timp et al. [15]

proposed a dynamic programming-based segmentation

method in which they used a polar-coordinate-converted

image. However, the method did not solve the problem of

locating the salient image contour but relied on another

tissue near the desired contour. Moreover, it was necessary

to determine manually the central point of a mass for

precise contour extraction.

The contour extraction of a mass is always difficult

because of the characteristics of the X-ray images. These

characteristics are affected mainly by the fact that the

background area in which a mass exists has a density slope,

and that normal tissues such as the mammary glands and

blood vessels can overlap the mass. Because of these less-

than-ideal backgrounds, it is difficult to obtain the correct

contour by using only a simple threshold method or region-

growing method. In addition, it is necessary to include a

technique that can distinguish normal tissues around the

mass from the abnormal tissues in order to prevent the

former from being extracted. Furthermore, because radi-

ologists estimate unclear regions based on their anatomic

knowledge or on the form of the contour that is apparent,

extraction processing by a computer is also required for a

technique that can perform the same estimate as do

radiologists.

An active contour model (ACM) that Kass et al. [16]

have proposed is a technique for contour extraction based

on the principle of minimization of the energy defined on a

closed curve comprising control points. The ACM is useful

in extracting the contour of an object at a high contrast

against a background and for distinguishing smooth forms.

However, its applicability is limited because it is unstable

for detecting contours corresponding to mammographic

masses that have relatively low contrast. Moreover, it is

necessary to devise an automatic technique for setting the

parameters as well as an initial contour at a position suf-

ficiently close to the target because of the variations in the

position, form, and size of a mass. This primary condition

significantly influences the final result. In the case of

variations in a mass, it is not easy to recognize the size,

form, and position of the target beforehand, and in such

cases, even if it is not desirable, the initial contour must be

set up manually.

Our purpose in this study was to develop a contour

extraction process based on our modified ACM (radial-

searching contour extraction method) for recognizing the

unclear contour of a mass. The details of the proposed

technique are described as follows, and its validity is

examined based on an experiment applied to mammo-

graphic masses.

2 Materials and methods

2.1 Overview of automated contour extraction method

Methods for evaluating unclear regions, for example, a

simple threshold method or region-growing method, cannot

be optimized because an underestimation of the region or

region overflow often occurs. The ACM is one of the

methods for extracting the object contour and an energy-

minimizing spline, which consists of multiple control

points, conducted by external and image forces that pull the

spline curve toward the features of the object’s contour in

the image. An initial contour is first placed by the user

manually or in some automatic way, and then the ACM

deforms itself into conformity with the nearest salient

contour by using an energy-minimization procedure.

When applying the conventional ACM method to a

region where the contrast is low and the contour is

ambiguous, it is often difficult to shift the control point to

an ideal position. Moreover, it is necessary to devise an

automatic technique for setting conditions such as an initial

contour because of variations in the position, form, and size

of a target. In order to tackle these issues, after the deter-

mination of the central point of a mass, we arranged an

initial contour at the central point, and the movement of a

control point was limited to directions radiating from the

central point (Fig. 1). The central point of a mass was

defined as a convergence point of the edge direction, which
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was defined as the density gradient from each point on the

mass contour, because the pixel values of the mass tend to

increase toward the center. This process can prevent the

control points from converging at positions of high inten-

sity other than the mass; this is because the effect of an

unclear contour can be determined based on the relation-

ship between the position of the central point and a contour

with relatively high contrast. The central point, in an ideal

situation, is inside a contour and is located at a position

equidistant from each point in the contour.

Moreover, it is possible to increase the extraction

accuracy by choosing the pixel used for processing and

using two images—an edge-intensity image and a degree-

of-separation image defined based on the density histo-

gram—for calculating the image forces of an ACM.

Limiting the search range of the control points to a line

segment made it possible to determine the unclear contour

because it became possible to locate a control point even in

the region where the edge intensity was low compared with

that of the circumference. Next, the control point was

moved radially from the center, and a set of control points

that generate a minimum amount of energy was determined

to be the contour of a mass.

An example in which this technique is applied to mass

images on mammograms is given below, and the details of

the technique are described in this section.

2.2 Determining the central point of a mass

As shown in Fig. 2a, in a mammogram, the mass appears

whiter (higher density) than the surrounding tissue. Pro-

cessing based on the threshold method determines the

rough region of the mass, as shown in Fig. 2b, as the pri-

mary region detected by the detection algorithm for a mass

in our CAD system [4]. The central point of the mass was

determined by use of the primary region extracted by the

detection technique of the CAD system. The control points

were arranged with respect to the central point, and this

arrangement was considered to be the initial contour. The

central point of the mass is located near a convergence

point of the edge direction defined as the density gradient

from each point on the mass contour, because the pixel

values of the mass tend to become high toward the center.

Therefore, the position of the central point was determined

by searching for the direction of the edge in the mass

region.

The processing images are shown in Fig. 3. Erosion

and dilation of the morphologic operation were performed

on the original image [17, 18], i.e., in Fig. 3a, during the

preprocessing for erasing the edge intensity of a calcifi-

cation that made the accurate determination of the central

point impossible when the calcification existed in the

Central Point of 
a target

Control Point

Fig. 1 Movement direction of the control points for searching for the

contour

Fig. 2 Example of a mass on a mammogram. a Original image; and b a contour of primary detection region extracted by our CAD system
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mass region. A disc with a radius of 1 mm was used as a

‘‘structure element’’ used in the morphologic operation for

erasing the calcification, taking into account its size. The

edge image was developed from the pre-processed image

by use of a Sobel filter [19]. The edge intensity near the

skin line was higher than the contour edge intensity of the

mass in the edge image, and the former might have a

detrimental effect on the subsequent processing. Pixels

whose value did not exceed 30% of the maximal value in

the mass region were not used for the processing, because

we wanted to exclude the region near the skin line from

the processing. This threshold value defined as the per-

centage of the pixel value was determined by trial and

error, such that the circumferential region of a mass was

included and the low-density regions near the skin line

were excluded from the analysis area. Although, ideally,

the threshold value should be determined automatically

for every image, a value was tentatively assigned for this

study.

Next, the line segment was lengthened in the direction

of the density gradient from each pixel of the edge image,

and all of the line segments were added to form an image

called the edge-direction image. The length of the line

segment was set at 20 mm because the radius of the target

mass was 20 mm or less; the width as 1 pixel; and the pixel

value was set in proportion to the edge intensity. The point

that had the maximum pixel value in this edge-direction

image was determined as the central point of the mass.

Figure 3e shows the central point that was determined (the

dot in the figure) and the target area to be analyzed in the

next step (inside the circle in the figure).

2.3 Pixel profiling by sorting-out of pixels

A line segment with a width of 1 pixel was lengthened

radially from the central point of the mass, and the pixels

on the line segment were profiled as

Ph;r ¼ fcxþr cos h; cyþr sin h ð0� h\360; 0� r\lÞ; ð1Þ

where P represents the radial-profile image; f, the original

image; (cx, cy), the central point; r, the distance from the

central point; h, the direction of the line segment for the

profiling; and l, the length of the line segment. This pro-

cessing was performed in each direction from 0� to 360�
for drawing the radial-profile image, as shown in Fig. 4.

The contour extraction was performed by use of this radial-

profile image. The conversion to polar coordinates was

performed to simplify the processing, even though the

extraction could be performed in rectangular coordinates.

The length of the line segment was set to 40 mm because

the size of the mass was comparable to a circle with a

maximum radius of 20 mm, and 20 mm outside this

hypothetical circle might be included as the background in

an area to be analyzed. The interval angle of each line

segment was set to 0.86� (418 divisions) to narrow the

distance between the control points arranged at the contour

of the target mass.

During pixel profiling, the edge of the contour was

differentiated from the normal tissue as follows: as the

position changes from the central point to the circumfer-

ence, there is a tendency for the mass to have a low pixel

value on the mammogram, and this value becomes high in

the regions where normal tissues such as a mammary gland

Fig. 3 Determination process for the central point of a mass. a Original image; b morphologic-processed image; c edge image; d edge-direction

image; and e central point and area to be analyzed (circle)
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or blood vessels are found. Therefore, the profile was

executed only if a pixel value became low toward the

outside from the central point, as follows:

Ph;r ¼

fcxþr cos h;cyþr sin hðfcxþr cos h;cyþr sin h

�fcxþðr�1Þ cos h;cyþðr�1Þ sin h\0Þ
fcxþðr�1Þ cos h;cyþðr�1Þ sin hðfcxþr cos h;cyþr sin h

�fcxþðr�1Þ cos h;cyþðr�1Þ sin h\0Þ:

8
>><

>>:

ð2Þ

Moreover, if a pixel had a value less than 40% at the

central point, the profiling was skipped because the low-

density regions near a skin line or outside the breast region

have to be eliminated from the target area.

The processing that distinguishes the masses from nor-

mal tissue is not necessarily effective in all cases, and an

exact distinction cannot be expected. However, even if the

normal tissue resembles a mass that is indistinct, its

brightness barely increases from the center toward the

circumference. The brightness may increase in cases where

a mass overlaps the normal tissue. In order to distinguish

the mass easily, we simply excluded the pixels in which the

brightness increased from the center toward the circum-

ference in the subjects of the analysis. It was predicted that

this condition could exclude the edge of the normal tissue

from the analysis area.

2.4 Images for calculating image force in ACM

A basic ACM model is a closed spline curve under the

influence of the image forces that push the ACM toward

image features like lines and edges [16]. The density slope

of an image is generally used for calculating the image

force. The density gradient, which is used in the Sobel

filter, is determined by calculating the difference value not

from the entire analysis area, but from the local area.

Therefore, the control points of an ACM have the possi-

bility to be attracted to singular points that are not a part of

the mass contour. Moreover, indistinct contours complicate

the process of contour extraction because the edge intensity

of these contours has low values.

In order to accommodate this situation, we used dis-

crimination analysis of the density distribution for the

entire analysis area to guess the density of the contour.

The density of the boundary between the mass region and

the background was predicted by the pixel-value histogram

of the pixels in each profile angle. The degree of separation

calculated from the histogram indicates the suitability of a

pixel value for dividing the histogram into two groups. This

degree of separation is the distributed ratio k given by the

evaluation function [20] of the following formula:

k � r2
B

r2
W

; ð3Þ

where rB and rW are inter- and intraclass variances,

respectively.

r2
B ¼

1

N
n1 l1 � l0ð Þ2 þ n2 l2 � l0ð Þ2
n o

ð4Þ

r2
W ¼

1

N

XT

x¼0

x� l1ð Þ2hðxÞ þ
XM

x¼Tþ1

x� l2ð Þ2hðxÞ
( )

; ð5Þ

where h(x) is the density (pixel value) histogram; M, the

maximal pixel value; T, the threshold of the pixel value for

the separation; and

N ¼
XM

x¼0

hðxÞ ð6Þ

n1 ¼
XT

x¼0

hðxÞ ð7Þ

n2 ¼
XM

x¼Tþ1

hðxÞ ð8Þ

l0 ¼
1

N

XM

x¼0

xhðxÞ ð9Þ

l1 ¼
1

n1

XT

x¼0

xhðxÞ ð10Þ

r

360°0

y

x

r

Mass

Central Point

(a) (b)
Fig. 4 Transformation of

coordinate system to form the

radial-profile image. a Original

image of a mass and b radial-

profile image
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l2 ¼
1

n2

XM

x¼Tþ1

xhðxÞ: ð11Þ

Examples of a radial-profile image, edge image, and

degree-of-separation image are shown in Fig. 5. The edge

image was formed by calculation of the density gradient

from the central point to the outside at each pixel in each

profile angle.

2.5 Energy-minimization procedure

Four hundred and eighteen control points were set to the

position of the central point of each angle in the radial-

profile image. The energy of an ACM was decided by the

sum of the internal energy and image forces. The position

of an ACM was represented by v(s) = (x(s), y(s)), s = 1,

..., N. The energy function was defined as

EACM ¼
XN

s¼1

wintEintðsÞ þ wimageEimageðsÞ
� �

; ð12Þ

where Eint represents the internal energy and Eimage rep-

resents the image forces. The total energy, EACM, was

defined as a combination of the two energy functions that

was weighted by coefficients, w, N was 418, and wint and

wimage of the energy terms were set at 2 and 1, respectively.

The internal energy, Eint, served to impose a piecewise

smoothness constraint and was calculated from the first-

and second-order derivatives with respect to the coordi-

nates of the control points as follows:

EintðsÞ ¼ vðsþ 1Þ � vðsÞf g2 þ vðsÞ � vðs� 1Þf g2

þ vðsþ 1Þ � vðsÞf g � vðsÞ � vðs� 1Þf g½ �2:
ð13Þ

The image forces were calculated from the edge image and

degree-of-separation image. The weight coefficient for each

energy term was determined by trial and error. The mini-

mization procedure was an iterative technique; namely, each

control point was moved by one pixel in the direction where

the total energy becomes minimal among the pixels of the

upper and lower sides of each control point. This processing

was carried out until the energy converged.

2.6 Smoothing of edge image and degree-of-separation

image by use of a Gaussian filter

The edge image and the degree-of-separation image were

multiplied by the Gaussian filter, forming gradual slopes in

order to prevent the control points from being interrupted at

a position that did not possess the slope of the image force.

The Gaussian filter was defined as

f ðrÞ ¼ e�r2=2r2

: ð14Þ

The value of r was set to the average of the distance from

the central point to the point that was likely to have a

contour. The assumed contour was determined by search-

ing of the point with a maximum summation of the edge

intensity and degree of separation for every profile angle,

so that the control points were attracted to the area where

the above two parameters were of high intensity. The value

of r gradually decreased as the convergence of the control

points progressed. For example, when the energy-minimi-

zation procedure was repeated nine times, the value of r
was reduced to 9.0, and the variance was 1.0 in the final

result of the contour extraction.

3 Results

The accuracy of the determination of the central point and

that of the automated extraction method were evaluated on

53 masses with many ‘‘difficult contours’’ on 53 digitized

mammograms. All of the mammograms were recorded by a

screen/film system and digitized at 0.05-mm spatial reso-

lution, 12-bit density resolution, and a density range of 0.0–

4.0. The process of determination of the central point

employed images reduced to 1/100 (0.5 mm/pixel) of the

original images. The processing performed subsequently

employed the images reduced to 1/6 (0.3 mm/pixel) of

their original sizes.

Fig. 5 Images for the active contour model. a Radial-profile image

with sorting-out procedure; b edge image; and c degree-of-separation

image. The horizontal and vertical axes correspond to the angle of the

profile and the distance from the central point, respectively
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Figure 6 shows the distribution plot of the contrast,

which was defined as the difference in the optical density

of a mass and its circumferential region, and the diameters

of the masses in our database used for the simulation. The

results of determining the central points of masses were

evaluated subjectively by comparison with the sketches

drawn by an experienced breast physician. The results of

the automated extraction method were compared quanti-

tatively with the ‘‘correct contours’’ drawn by a physician.

The index for the estimation of the extraction accuracy was

defined by the fraction of the area inside an extracted

contour that overlapped with the region inside the ‘‘correct

contour.’’ The overlap ratio was defined as follows:

Overlap ¼ Aext \ Acor

Acor

; ð15Þ

where Acor and Aext are the regions of the correct data and

the extracted region, respectively. The error in the

extraction was defined by the ratio of an extracted region

to the region that did not overlap with the correct data. The

error ratio was defined as follows:

Error ¼ ðAext [ AcorÞ � ðAext \ AcorÞ
Aext [ Acor

: ð16Þ

Figure 7 shows the difference in the pixel value and

the degree of separation of a profile with and without the

sorting-out procedure. In the case shown in the figure, the

contour of the mass was located 20 pixels from the central

point of the mass. The pixel value of the profile curve

without the sorting-out procedure (indicated by crosses in

the figure) gradually became low as the position deviated

from the central point, and the pixel value rose from

30 pixels, which was a mammary-gland region. Further-

more, the pixel value rose again at 50 pixels after a decline,

and decreased from near by 60 pixels. The edge intensity

became comparatively high in the positions with an

increase in the pixel value. In contrast, there was no density

change in the profile curve with the sorting-out procedure

(indicated by dots in the figure) because the pixel value

variance in the mammary-gland region located from 30 to

70 pixels was planarized.

Moreover, the distribution curve of the degree of sepa-

ration with the sorting-out procedure (indicated by dots in

the figure) had only one high peak, which appeared near

the position of the mass contour. Therefore it was easy to

search the contour, even though there were three peaks in

the distribution curve of the degree of separation without

the sorting-out procedure (indicated by crosses).

Figure 8 shows the result obtained when this technique

was applied to the mass of Fig. 2 and the sketch drawn by a

physician. There was a small difference concerning the

low-contrast region between the contour of the physician’s

sketch and that of the primary detection result obtained

with our CAD system, as indicated in Fig. 2b. However,

the unclear contour that was found in the upper left portion

of the mass was improved, and on the whole, the results

were good.

In the determination of the central point of the masses,

the central point could be determined correctly in 89%

(41/46) of the cases examined, when the seven cases the

cause of whose cause of failure was a mistake in the rough

extraction step of our mass-detection algorithm were

counted out. The correct answer for the central point was

assumed to be the barycentric coordinate of a mass region,

which had been determined subjectively. A small extent of

displacement of the central point did not always have an

adverse affect on the accuracy of the contour extraction

because the ACM was sufficiently flexible for compen-

sating for the resulting irregularities in the contour.

The automated extraction method was compared quan-

titatively with the correct segmentation represented by

sketches made by a well-experienced physician. The results

are shown in Fig. 9. The numbers of cases in which the

extracted region corresponded to the correct region with
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overlap ratios of more than 81 and 61% were 30 and 45,

respectively. Many cases were observed wherein the

extracted region corresponded to the correct region. More-

over, the regions extracted by the proposed technique were

extremely precise as compared with the primary detection

regions extracted by the adaptive threshold method in our

CAD system; however, in some cases, the area did not

correspond to the correct region. The contour extraction was

difficult for some of the masses having indistinct contours in

total or in part, and the error ratios were more than 60%.

These were difficult even for a physician to observe and

determine. The extracted region tended to be large when the

size and contrast of the masses were small.

Figure 10 shows examples of the contour extraction

results. The degrees of congruence and error were 89 and

11%, respectively, in case 1; 68 and 33% in case 2; 52 and

48% in case 3. The degree of congruence was high and the

error was small in cases where the contour of the mass was

circular, as in case 1. The masses with a high contrast and

clear contours were extracted with comparatively good

accuracy, although an irregular mass similar to that in case

2 tended to have a low degree of congruence as compared

with case 1. In some cases involving masses with several

contours, the size of the mass was smaller than that

expected, and the contrast was low, similar to that in case

3; the extraction results included the area external to the

correct region, and the error area was large. When the

masses were fairly visible with distinct contours, the results

were good. The contour extraction results for masses that

had a low contrast and an unclear region differed from

those obtained by the physician, and when no clear con-

tours were apparent, this difference was more marked.

Moreover, there were few cases with adequate extraction in

the region where the sketch was not drawn because the

observation was difficult even for a physician. However, it

many cases, when the mass contained some unclear

regions, it was possible to form a valid contour in these

regions by connecting the points that had a high probability

of forming the correct contour. This probability was esti-

mated based on the relationship between the position of the

central point and the relatively distinct contour.

As a part of the CAD system, we have also been devel-

oping a scheme for the classification of breast masses on

mammograms [21]. The classification system extracts var-

ious features such as density, contrast, shape type, and

spiculation from the mass regions. The extracted contours of

52 masses (10 benign and 42 malignant) were fed into the

benign/malignant classification system. The performance of

the system with regard to different contours was evaluated,

and the results are shown in Table 1. With use of the correct,

Fig. 8 An example of

extraction result. a
Automatically extracted contour

of the image shown in Fig. 1;

and b its sketch drawn by a

physician
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Fig. 9 Ratio distribution of area between the extracted results and the

regions inside ‘‘correct contour’’
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manually drawn contours, the benign/malignant classifica-

tion accuracy was 85% (44/52). However, the classification

accuracies obtained by use of the contours produced by the

modified active contour model and our conventional seg-

mentation method based on the adaptive thresholding

method were 79% (41/52) and 65% (34/52), respectively.

4 Discussion

Our technique was applied to masses whose contour

extraction was difficult when the simple threshold method

was used. A precise contour extraction was obtained in

many cases in which the pixel values of the mass regions

were partly equivalent to the background. This result

showed that searching for the contour in the direction

radiating from the central point of the mass and deter-

mining the contour based on the local density gradient and

global density distribution could reduce the influence of the

density gradient of the background around the mass.

Moreover, using only the pixel whose value became low

toward the outside from the central point could reduce the

influence of the density or edge intensity, such as in the

case of a mammary gland.

These advantageous effects could make the distinction

between a mass contour and normal tissue easier, and thus

Fig. 10 Three segmentation

examples: a Original images;

b primary detection regions by

the CAD system; and

c segmentation results.

d Physician’s sketches for

comparison

Radial-searching contour extraction method based on a modified active contour model for mammographic masses 159



simplify the extraction process. The results show that the

possibility that the extraction would be successful even at

low-density gradients was increased by use of two ima-

ges—the edge intensity and the degree of separation—for

the image force of the ACM. Furthermore, this technique

was effective in cases with partly unclear regions because

of the following advantageous effect: the unclear contour’s

position was presumed from the relationship between the

central point of the mass and the distinct contour. However,

if the central point was determined as the position in which

the lengths from each point on the correct contour differed

considerably, the extraction might not succeed. This is

because it was difficult for the gradual density gradient of a

Gaussian filter to attract the control points of the ACM to

the position of the correct contour. Therefore, if the accu-

racy of the method for determining the central point is

increased, it is to be expected that the level of accuracy of

the contour extraction will also increase. Additionally,

there is a limitation that this method cannot be applied to

cases in which the shape of a mass is vastly different from a

circle or an ellipse, because there will be several contours

on the line segment lengthened radially from the central

point of the mass in such cases.

In certain cases involving very small contours, the

extraction was not possible because of the difficulty in

the determination of the central point. One of the causes of

the extraction failure also lay in the various radii of the

masses listed in the database, although the assumed radius

of the target mass was 10–20 mm in this study. The data

used for this study were obtained at a cancer center, rather

than from screening mammography. Although small mas-

ses should be targeted for detection, we believe that the

CAD system can be used satisfactorily for the classification

of large masses. One of the ACM’s parameters with respect

to the size of masses was set as 10 mm in this study

because there were many relatively large masses in the

dataset. However, this parameter should be adjusted to a

smaller value when this technique is applied to screening

mammography or, more specifically, is optimized dynam-

ically depending on the size of a target mass. This will be a

subject for our future studies.

The parameters of the ACM segmentation model such as

coefficients of the energy terms may have been overtrained

because the data set was relatively small. Although public

databases such as that of the University of South Florida

contain many cases and serve many purposes, there are no

detailed data on the contours of masses required for the

shape recognition of the contour in our classification

scheme, which analyzes the contour by detecting the subtle

sawtooth region of the mass contour. Therefore, our local

database was used for this study. However, it is necessary

to evaluate the performance of this model in the future by

using many precise data. Additionally, measuring the

geometric matching distance such as the Hausdorff dis-

tance [14] would be better as an additional, more precise

evaluation criterion. The performance of the extraction

method was evaluated by the overlap and error ratio in this

study; however, this criterion might not be reflected in the

correspondence between the two regions in the details of

the contour.

When the automatically extracted contours produced by

the modified ACM were used, the benign/malignant clas-

sification system achieved an accuracy of 79% (41/52).

This classification accuracy was higher than that (65%

(34/52)) of our conventional segmentation method, which

is based on the adaptive thresholding method. These results

demonstrate the feasibility of using the modified active

contour model for classifying benign and malignant masses

on mammograms in a computer-aided diagnosis scheme.

5 Conclusion

We developed a contour extraction technique based on a

modified ACM for masses on mammograms, and we

evaluated its performance. Valid results were obtained

from the experiments involving masses whose contours

were difficult to extract. This technique will be useful for

the segmentation of masses in CAD schemes.
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