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ABSTRACT 

The presence of microaneurysms in the eye is one of the early signs of diabetic retinopathy, which is one of the leading 
causes of vision loss. We have been investigating a computerized method for the detection of microaneurysms on retinal 
fundus images, which were obtained from the Retinopathy Online Challenge (ROC) database. The ROC provides 50 
training cases, in which “gold standard” locations of microaneurysms are provided, and 50 test cases without the gold 
standard locations. In this study, the computerized scheme was developed by using the training cases. Although the 
results for the test cases are also included, this paper mainly discusses the results for the training cases because the “gold 
standard” for the test cases is not known. After image preprocessing, candidate regions for microaneurysms were 
detected using a double-ring filter. Any potential false positives located in the regions corresponding to blood vessels 
were removed by automatic extraction of blood vessels from the images. Twelve image features were determined, and 
the candidate lesions were classified into microaneurysms or false positives using the rule-based method and an artificial 
neural network. The true positive fraction of the proposed method was 0.45 at 27 false positives per image. Forty-two 
percent of microaneurysms in the 50 training cases were considered invisible by the consensus of two co-investigators. 
When the method was evaluated for visible microaneurysms, the sensitivity for detecting microaneurysms was 65% at 
27 false positives per image. Our computerized detection scheme could be improved for helping ophthalmologists in the 
early diagnosis of diabetic retinopathy.  
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1. INTRODUCTION 
In Japan, there are approximately 8.2 million patients with confirmed diabetes and approximately 18.7 million patients 
with suspected diabetes [1]. Approximately 3 million are thought to suffer from diabetic retinopathy (DR). This disease 
can be prevented from causing blindness if it is treated at an early stage. However, it has been reported [2] that 
approximately 3,000 people have lost their vision following the onset of DR. Retinal fundus images captured using a 
fundus camera are used for the diagnosis of DR. Ophthalmologists usually examine the presence of hemorrhages, 
microaneurysms, and exudates in order to diagnose DR. By using fluorescein angiograms, ophthalmologists can detect 
hemorrhages and microaneurysms. However, in the case of mass screening, using fluorescein as a contrast medium for 
diagnosing DR is not feasible. Therefore, only those patients who show the possibility of having DR are thoroughly 
examined in a hospital. It is desirable to detect hemorrhages and microaneurysms on retinal fundus images without using 
the contrast medium; however, detection of hemorrhages and microaneurysms is difficult because of their low contrast in 
noncontrast images. Therefore, a computer-aided diagnosis (CAD) system for the detection of these lesions can help 
ophthalmologists and physicians who review the mass screening exams in diagnosing DR. 

Recently, many studies have been conducted on automated detection of DR [3–8]. Fleming et al. proposed a method for 
the detection of microaneurysms by using a watershed transform on fluorescein angiograms [3]. Serrano et al. proposed 
a method for detecting microaneurysms by the region growing technique in order to analyze fluorescein angiograms [4]. 
Other groups have investigated methods that use regular retinal fundus images captured without using the contrast 
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medium. Usher et al. reported a method for detecting hemorrhages, microaneurysms, and exudates by using adaptive 
intensity thresholding combined with an edge enhancement operation [5]. Niemeijer et al. proposed a method for the 
detection of red regions by pixel classification and feature analysis [6]. The sensitivity and specificity of their method 
were 100% and 87%, respectively. Nagayoshi et al. [7] reported a method that included normalization processes in 
addition to Usher’s method [5]. Grisan et al. proposed a method for detecting the dark lesions on the basis of local 
thresholding and pixel density [8]. On the basis of a dataset of 60 annotated images, they reported a mean detection rate 
of 94% for lesions present in an image. 

We have been attempting to develop a synthetic fundus CAD system [9–14]. We previously proposed methods for 
detecting abnormal blood vessels to help ophthalmologists in the diagnosis of hypertensive retinopathy [9, 10]. 
Moreover, we investigated methods for detecting retinal nerve fiber layer defects (NFLDs) [11] and for calculating the 
cup-to-disc ratio (C/D ratio) [12] that can be useful in the diagnosis of glaucoma. In addition, a technique for obtaining 
the depth value from the stereo image pair of a retinal fundus in the 3-D reconstruction of the optic nerve head [13] was 
developed. We also proposed a method for detecting hemorrhages and exudates in retinal fundus images without using 
contrast medium [14]. 

The aim of the present study is to develop methods for detecting microaneurysms in noncontrast images of the retinal 
fundus. A microaneurysm is one of the early signs of the onset of DR. It appears as a point lesion darker than the 
surrounding regions in retinal fundus images. Figure 1 shows a retinal fundus image with a microaneurysm. 

 

 
 

Fig. 1. Example of a retinal fundus image with a microaneurysm. (a) Original retinal fundus image, and (b) enlarged image 
of the microaneurysm marked by a rectangle in (a). 

 

2. MATERIALS AND METHOD 
2.1 Database for this study 

Retinal fundus images used in this study were distributed to interested researchers who desired to participate in the 
Retinopathy Online Challenge (ROC) [15] hosted by the University of Iowa. The database includes 50 retinal fundus 
images with “gold standard” locations of microaneurysms identified by a consensus of four ophthalmologists; these 
cases were intended to be used as a training set for the development of CAD systems. The ROC also includes 50 testing 
cases in which “gold standard” locations are not provided to the participants. For this reason, even though the results for 
the test cases are also included, training cases are mainly discussed in this paper. 

(a) (b) 
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The 50 training cases include RGB color images in three different image sizes: 768 × 576 pixels, 1059 × 1061 pixels, 
and 1389 × 1388 pixels; the number of images under each image size is 22, 3, and 25, respectively. Thirty-seven images 
include a total of 336 microaneurysms, whereas no microaneurysms were identified in the remaining 13 images. The 
number of microaneurysms identified in each of the 37 images ranges from 1 to 41. 

2.2 Overall scheme for detection of microaneurysms 

The flowchart of the overall detection scheme is shown in Fig. 2. First, images were preprocessed to reduce noise and 
variation in the brightness of the images. For simplicity in further processing of the images, the matrix sizes of the 
images were standardized to the largest one of the three different image sizes included in the database. The initial 
detection of the microaneurysms was attempted by applying the double-ring filter on the green channel of the color 
images; this was followed by the elimination of lesions in the blood vessels, which were false positives. Next, the shapes 
of the candidate lesions for an accurate determination of their image features were examined. Finally, the candidate 
lesions were classified as microaneurysms or false positives by the rule-based method and by using an artificial neural 
network (ANN). 

 

Retinal fundus image

Image preprocessing

Initial detection of microaneurysms Extraction of blood vessels

Removal of blood vessels

Re-examination of candidate lesions

Determination of candidate lesion features

Reduction of false positives  
Fig. 2. Flowchart of overall scheme for detection of microaneurysms. The extraction of blood vessels from the images is 

incorporated for removing the false positives in the detected regions of the blood vessels. 

 

2.3 Image preprocessing 

The differences in brightness and colors of the retinal fundus images were due to the photographic conditions. In order to 
reduce these differences, brightness correction, gamma correction, and contrast enhancement [14] were applied to each 
image. The contrast of microaneurysms tends to be high in green color; therefore, RGB color images were converted to 
green-channeled images. Because the ROC database includes images with three different sizes, smaller images were 
enlarged using a bicubic convolution method so that their widths were unified to those of the largest images. The aspect 
ratio of each image was the same as that of the original image. Because the image noise may also be amplified, a median 
filter of dimensions 3 × 3 pixels was applied for reducing the image noise. 

 

2.4 Initial detection of microaneurysms 

Microaneurysms appear as lesions darker than the surrounding retinal regions. Therefore, it was expected that 
microaneurysms could be detected by using a double-ring filter [10], which compares the target pixel values with the 
neighboring pixel values. The filter consists of an inner circle and an outer ring with diameters of 5 and 13 pixels, 
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respectively. If the average pixel value in the inner circle was lower than the surrounding pixels in the outer ring region 
for a certain amount, the pixel in question became a candidate pixel for microaneurysms. In this study, the maximum 
number of candidate lesions for microaneurysms in each image was limited to 300.  

 

2.5 Removal of blood vessels appearing as false positives 

After the initial detection of microaneurysms, many blood vessels appeared as false positives in the preprocessed green-
channeled images. In order to eliminate these false positives, the pixels corresponding to the part of the blood vessels 
were extracted by using the double-ring filter. This double-ring filter had an inner circle and outer ring with diameters of 
7 and 21 pixels, respectively.  

The initially detected candidates were superimposed onto the images of the extracted blood vessels. Lesions that were 
detected in the blood vessel regions were considered as false positives and removed from the candidates. 

 

2.6 Re-examination of candidate lesions 

The shapes of candidate lesions after the initial detection are affected by the structure of the double-ring filter. Therefore, 
the shapes of candidate lesions were not determined accurately, which could influence the accuracy of image feature 
analysis. In order to determine the shapes of candidate lesions correctly, their shapes were re-examined. On the basis of 
the remaining candidate pixels after the removal of false positives, neighboring pixels with comparable pixel values were 
included in the candidate lesions.  

 

2.7 Feature determination and reduction of false positives 

The candidate lesions in the initial detection process included numerous false positives. Therefore, in order to remove 
the false positives, 12 image features were calculated for each candidate lesion. The 12 features included (1) area, (2) 
degree of circularity, (3) length-to-width ratio [16], (4–6) mean value of the candidate lesion in each of the red, green, 
and blue bits, (7–9) difference between the maximum and minimum pixel values of the candidate lesion in each of the 
red, green, and blue bits, and (10–12) contrast, which is defined as the difference between the mean value of the 
candidate lesion and the mean value of the surrounding regions in each of the red, green, and blue bits. 

The surrounding regions mentioned in features (10–12) are defined as the pixels that are separated by less than two 
pixels from the border of the candidate lesion; the pixels are determined by dilation operation. Figure 3 shows the 
regions of a candidate lesion marked as “A” and its surrounding regions marked as “B.” 

B B B B B B B B
B B B B B B B B B B B
B B B A A A A A B B B
B B A A A A A A A B B B
B B A A A A A A A B B B
B B A A A A A A A A B B
B B B A A A A A A A B B
B B B B A A A A A B B B

B B B A A A A B B B B
B B B B B B B B B
B B B B B B B B

 
Fig. 3. Example of candidate lesion marked as “A” and surrounding regions marked as “B,” which are used for determining 

the contrast. 
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On the basis of these features, candidate lesions were classified as microaneurysms or false positives using the rule-
based method and an ANN. For the ANN, a three-layered feed-forward network with a back-propagation algorithm was 
employed. The number of input features was varied from 1 to 12. The classification utility of each feature was 
determined by discriminant analysis. The number of features was decreased one by one from 12 to 1 by removing the 
features with the lowest utilities. The number of hidden units was also varied along with the number of input units. For 
avoiding over-training of the ANN, the training was stopped at a certain iteration number. 

 

2.8 Evaluation of computerized detection method 

The results of our CAD system were evaluated by use of the free-response receiver operating characteristic (FROC) 
analysis. If the barycenter of a candidate lesion was within a certain distance from the “gold standard” location of the 
microaneurysms, the result was considered as a true positive detection. 

The ROC cases include many microaneurysms that are very difficult to detect. Therefore, the visibilities of the 
microaneurysms used in this study were evaluated individually by the two co-authors (A.M. and C.M.). They were 
unblinded to the “gold standard” locations. As a result, 140 out of 336 microaneurysms, 42 percent of all, were 
determined invisible by both co-authors. Figure 4 shows the green-channeled image of a visible microaneurysm and the 
green-channeled image of an invisible microaneurysm. The contrasts of invisible microaneurysms in relation to the 
surrounding retinal regions are considerably lower than those of visible microaneurysms to the surrounding retinal 
regions. 

It appeared that the detection of these invisible microaneurysms was extremely difficult, if not impossible. Even if these 
microaneurysms were detected by the CAD system, ophthalmologists reviewing the computer outputs would probably 
ignore them. Therefore, for the training cases, the results of our computerized scheme were evaluated in two ways: the 
sensitivities were determined for all microaneurysms and for visible microaneurysms only. 

 

 
 

Fig. 4. (a) Green-channel image of a visible microaneurysm and (b) green-channeled image of an invisible microaneurysm. 
The “gold standard” locations of microaneurysms are at the center of these images. 

 

3. RESULTS  
The true positive fractions (TPFs) and the number of false positives per image (FPI) after the initial detection, the 
classification by the rule-based method, and the classification by the ANN for the training cases are summarized in Table 
1. The TPFs for the 196 visible microaneurysms are also shown in Table 1. The results indicate that detection of 
microaneurysms in the images of the ROC database is very difficult.  

(a) (b) 
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The computerized scheme was applied for the 50 test cases, and the test results obtained using the trained ANN were 
submitted to the ROC organizers. Figure 5 shows FROC curves obtained for all microaneurysms and only visible 
microaneurysms in the training cases and for the test cases. It is apparent in Fig. 5 that the sensitivity for detecting 
visible microaneurysms was considerably higher than that for “invisible” microaneurysms. The performance for the 50 
test cases was comparable to that for the visible microaneurysms in the training cases. Because the “gold standard” 
locations of microaneurysms in the test cases were not provided, detailed analysis of the results for the test cases was not 
possible. The results could be due to the difference in difficulty levels for detecting microaneurysms in the training and 
test datasets. 

 

Table 1. True positive fractions (TPFs) and the numbers of false positives per image (FPI) after the initial detection process, 
false positive reduction using the rule-based method and ANN for the 50 training cases. 

 TPF of all microaneurysms TPF of visible microaneurysms FPI
 

Initial detection 0.518
(174 / 336)

0.699
(137 / 196)

183.38
(9169 / 50)

Classification using the 
 rule-based method 0.506

(170 / 336)
0.699

(137 / 196)
105.28

(5264 / 50)

Classification using 
an ANN 0.449

(151 / 336)
0.648

(127 / 196)
27.04

(1352 / 50)
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Fig. 5. FROC curves for all microaneurysms and only visible microaneurysms in 50 training cases and that for 50 test cases. 
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4. DISCUSSION 
False positives detected in the images can be grouped into two major categories: (1) capillary blood vessel regions that 
were not identified as the regions corresponding to the blood vessels and (2) noise regions. Figure 6 shows the green-
channeled images of such false positives and the binary image of the lesions that were detected by the CAD system. 

Because the accuracy of the extraction of blood vessels from the images was insufficient, reduction of some false 
positives in the blood vessel regions failed. The accuracy of extraction of large blood vessels from the images was 
relatively high, whereas it was low for the capillary blood vessels. In order to remove the false positives in the blood 
vessels, it is important to improve the accuracy of extraction of blood vessels from the images. 

Further, one of the reasons for detecting noise as the candidates of microaneurysms was that noise reduction during 
preprocessing was not optimal. Moreover, block noise was prominent in some images. For these reasons, a selective 
noise reduction process that retains the contrast of microaneurysms is required. 

 

 
 

 
 

Fig. 6. Examples of false positives. (a) green-channeled image of a capillary blood vessel region, (b) detected regions of (a), 
(c) green-channeled image of noise regions, and (d) detected regions of (c). 

 

5. CONCLUSION 
We investigated a method for the automated detection of microaneurysms on retinal fundus images. We applied our 
method on the 50 training cases obtained from the ROC database; the sensitivity of our method was 45% when the 
number of false positives was 27 per image. Although this database includes extremely difficult cases, our method could 
be improved further for the detection of visible microaneurysms in order to facilitate the early diagnosis of DR. 

 

(a) (b) 

(c) (d) 
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