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Abstract The differentiation of focal liver lesions in mag-

netic resonance (MR) imaging is primarily based on the

intensity and homogeneity of lesions with different imaging

sequences. However, these imaging findings are falsely

interpreted in some patients because of the complexities

involved. Our aim is to establish a computer-aided diagnosis

system named LiverANN for classifying the pathologies of

focal liver lesions into five categories using the artificial

neural network (ANN) technique. On each MR image, a

region of interest (ROI) in the focal liver lesion was delineated

by a radiologist. The intensity and homogeneity within the

ROI were calculated automatically, producing numerical data

that were analyzed by feeding them into the LiverANN as

inputs. Outputs were the following five pathologic categories

of hepatic disease: hepatic cyst, hepatocellular carcinoma,

dysplasia in cirrhosis, cavernous hemangioma, and metasta-

sis. Of the 320 MR images obtained from 80 patients (four

images per patient) with liver lesions, our LiverANN classi-

fied 50 cases of a training set into five types of liver lesions

with a training accuracy of 100% and 30 test cases with a

testing accuracy of 93%. The experiment demonstrated that

our LiverANN, which functions as a computer-aided differ-

entiation tool, can provide radiologists with a second opinion

during the radiologic diagnostic procedure.
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Differentiation � Artificial neural network � Computer-aided

diagnosis (CAD)

1 Introduction

Each year, more than 25 million Americans are afflicted

with liver and gallbladder diseases, which take the lives of

more than 25,000 Americans and rank eighth among the

commonest causes of death. Hepatocellular carcinoma

(HCC) is the most common primary neoplasm of the liver,

accounting for approximately half a million deaths annually

worldwide [1]. In addition, the liver is one of the organs most

commonly associated with metastatic diseases, which arise

most frequently from the primary sites located in the colon,

breast, lung, pancreas, and stomach. Further, malignant

tumor-mimicking conditions such as dysplasia in cirrhosis,

cavernous hemangioma, or liver cyst must be accurately

diagnosed and differentiated from malignancy, which may

predispose to diagnostic dilemma in daily radiologic prac-

tice [2]. An early diagnosis provides the opportunity for

hepatectomy, liver transplant, or other interventional treat-

ments that may play a curative or palliative role.

Much research on liver analysis and segmentation is being

conducted worldwide, using imaging modalities such as

ultrasonography, magnetic resonance (MR) imaging, com-

puted tomography (CT), and positron emission tomography

(PET). The use of ultrasonography is less invasive, but the

visual criteria are generally confusing and highly subjective,

with a diagnostic accuracy of approximately 70% [3–6] for
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radiologists. In order to assist physicians in the characteriza-

tion of liver tissues, Ogawa et al. [7] developed a computer-

aided diagnosis (CAD) system with ultrasonography for dif-

fuse liver diseases that uses neural networks. Wang et al. [8]

carried out a texture analysis using a co-occurrence matrix to

investigate the existence of liver cirrhosis via ultrasonogra-

phy. Owing to the high image quality and shorter acquisition

time, CT images are suitable for the detection of liver diseases

and segmentation in the virtual planning of a liver surgery.

Bae et al. [9] proposed a method of extracting the liver

structure from CT images based on a gray-level thresholding

technique. Selle et al. [10] analyzed and visualized the hepatic

vascular structures when planning liver surgery.

Despite the advances in CAD for CT, the characterization

of a focal liver lesion is yet to be achieved by this method. To

date, only a few CAD studies on MR images are available,

particularly on the differentiation of liver disease. Tombr-

opoulos et al. [11] used a knowledge base of MR imaging

findings and a belief-network inference engine to generate

probabilistic differential diagnoses for 12 types of hepatic

lesions. However, inputting all of the clinical information

and the information inferred by the system from segmented

MR imaging is not practical in clinical use or medical

training. Maclin et al. [12] have devised a plan for improving

the diagnostic accuracy of the neural networks that includes

MR imaging and CT data. However, follow-up on their

experimental results is not currently feasible.

Because of its advantage of good spatial and contrast

resolution, MR imaging is used for the detection and char-

acterization of focal liver lesions in radiological practice.

Typically, in MR imaging of the liver, radiologists interpret

several MR images obtained with different pulse sequences

with and without contrast enhancement to make a diagnosis.

However, these imaging findings are falsely interpreted for

some patients because of the complexities involved [13]. Our

aim is to establish a CAD system for distinguishing the

pathologies of focal liver lesions on MR images; this system

is expected to assist radiologists in integrating MR imaging

findings with different pulse sequences (precontrast T1-

weighted, fast spin-echo (FSE) T2-weighted, and gadolin-

ium-enhanced MR images) and to raise the diagnostic

accuracy of imaging when performed by even inexperienced

radiologists (residents or general radiologists). Although the

diagnostic accuracy of an experienced specialist may be the

same as that of our CAD, our system tends to improve the

consistency of this procedure.

2 Materials and methods

In this study, we selected four types of MR images that

were considered most informative with regard to the

diagnosis of focal liver disease.

2.1 MR imaging of the liver

The basic principle underlying the diagnosis of focal liver

lesions with MR imaging is based on the difference in

signal intensity between liver lesions and liver paren-

chyma, internal architecture, and vascularity; these differ-

ences are evaluated through the use of T1-weighted

images, T2-weighted images, and gadolinium-enhanced

images obtained in the hepatic arterial phase and the

equilibrium phase that occur at approximately 25 s and

3 min, respectively, after the initiation of an intravenous

bolus injection of gadolinium chelate solution [14].

Precontrast T1-weighted MR images are ordinarily

obtained using a spin-echo or gradient-recalled-echo

sequence. In our experiment, the repetition time/echo time

was set at 316 ms/11 ms, as shown in Fig. 1a. Further, FSE

T2-weighted imaging, which has been shown to play a key

role in the characterization of liver lesions [15–19], is

performed using an FSE sequence. The signal intensities of

metastases for T1- and T2-weighted images are variable,

but are usually prolonged. T2-weighted imaging is reported

to be very effective in enabling radiologists to differentiate

between cavernous hemangiomas and metastases [20–25].

In our experiment, the effective TR/effective TE of FSE

T2-weighted images was set at 4615 ms/80 ms, as shown

in Fig. 1b.

HCCs often appear less hyperintense and less conspic-

uous in T2-weighted images, but are often readily detected

and characterized on enhanced MR images.

Through the use of gadolinium-enhanced dynamic MR

imaging of the liver, three different phases of images—

hepatic arterial, portal venous, and equilibrium phases—

can be obtained for the effective differentiation of focal

liver lesions. In these images, hepatic cysts are not

enhanced throughout the three phases, cavernous heman-

giomas are enhanced as intensely as the vessels in each

phase, and HCCs are often rapidly enhanced in the hepatic

arterial phase and show a washout in the equilibrium phase.

In addition, dysplasias in cirrhosis appear hyperintense on

unenhanced T1-weighted images, but are never found to be

enhanced in gadolinium-enhanced images, and metastases

often show no enhancement or ring-like enhancement in

hepatic arterial-phase images.

Radiologists diagnose focal liver lesions based on such

complex MR imaging findings for different focal liver

diseases. Examples of the hepatic arterial and equilibrium-

phase images are shown in Fig. 1c and d, respectively.

With a 1.5-T superconducting magnet (Signa Horizon; GE

Medical Systems, Milwaukee, WI, USA), 320 MR images

of 80 patients (four images per patient) who had focal liver

lesions were obtained. These cases were diagnosed by two

experienced radiologists, and the majority of them were

confirmed pathologically from biopsy or surgery. Although
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it is impossible to diagnose all lesions pathologically, the

remaining patients underwent angiography-assisted ultra-

sonography, CT, or follow-up MR imaging for confirma-

tion of the diagnosis. Our criterion for diagnosing

malignancy is rather stringent, with the exception of cases

in which the lesion size is very small; such cases were not

included in this study.

2.2 Logic classifier

MR imaging provides different types of images, and a

diagnosis is made by interpreting the complicated imaging

findings. Figure 2 shows a typical flowchart of MR imag-

ing findings observed for focal liver lesions with different

pathologies. Based on the fundamental MR imaging char-

acteristics of each pathologic type from the flowchart,

establishing a multiple logistic tree is not difficult. For the

first scenario for our program that we considered, check

box items were included in order to select intensity attri-

butes in four MR images and the homogeneity of T2-

weighted images. However, this method includes some

subjective parameters: for example, the continual intensity

value can be divided into three choices, which may cause

deviation from the decision when choosing between low

and iso (having the same intensity as the liver tissue),

intermediately high and high, homogeneous (low

variance), or heterogeneous (high variance), and so on.

Such subjective parameters may influence the diagnosis.

Moreover, in the diagnosis of more complicated cases, the

relationship among these parameters can be much more

complicated than that indicated in Fig. 2. The addition of

new cases or new types of images requires the recon-

struction of the logistic tree. Thus, one solution to these

problems is to establish an algorithm that can take in

continuous values as inputs and automatically adjust the

relationship between the input parameters and outputs. The

characteristics of the neural-network paradigm are suitable

for these requirements, and such networks have a powerful

ability to solve such classified problems efficiently.

2.3 Artificial neural network and its architecture

Artificial neural networks (ANNs), which have been suc-

cessfully applied in many fields related to medical imaging

[26–29], make it easy for less experienced doctors to make

a correct diagnosis by inferring new inspections from past

experience. We have developed software named ‘‘Liver-

ANN’’ [30, 31], based on ANN technology, for the diag-

nosis of focal liver disease. The network is trained using

the well-known back-propagation (BP) algorithm [32].

After establishing the relationship function between the

inputs and outputs, we apply the ANN to the doctors’

Fig. 1 Four ROIs (arrows) of lesions in the same case of a cyst show

different intensities and homogeneity. a T1-weighted spin-echo image

[316/11 (repetition time ms/echo time ms)]. ROI indicates cyst shown

as a hyperintense area, which is darker than the liver, with an intensity

value of 0.1 assigned by the computer. b T2-weighted fast spin-echo

image [4615/80 (effective TR/effective TE)]. Arrow indicates hyper-

intense area that is brighter than liver metastasis. Signal intensity and

homogeneity were assigned values of 0.9 and 0.9, respectively. c
Gadolinium-enhanced hepatic arterial-phase gradient-recalled-echo

image [150/1.6 (TR/TE)] appears very dark. The signal intensity of

this lesion was assigned a value of 0.1. d Gadolinium-enhanced

equilibrium-phase gradient-recalled-echo [150/1.6 (TR/TE)] image.

Signal intensity inside the lesion is very low, with an assigned value

of 0.1
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practical routine inspection to test the generalization ability

of the ANN.

Unlike a logistic tree, neural networks are not designed

based on explicit data and rules, but on numerous samples.

A knowledge-based neural network (KBNN) [33] provides

a method of combining the advantages of the above two

methods. The ideal approach would be to develop neural

network connections in accordance with Fig. 2, and then to

train the network by providing samples. However, it is

uncertain whether the relationship depicted in Fig. 2 is

complete. Some exceptional cases might be present.

Therefore, in this study we developed a fully connected

neural network, as shown in Fig. 3, which is a conventional

three-layer feed-forward neural network with five input

units, eight hidden units, and five output units. The selection

of hidden layer units is decided by the complexity of the

case data. If the number of units is less than five, the

learning procedure of the ANN becomes slow and conver-

gence is difficult, resulting in a failure to differentiate, even

for the training dataset. Therefore, we selected eight or

more hidden units in our experiment. The network learning

rate was set to 0.9, the momentum factor to 0.3, and the

number of training iterations was always 1700–2500, with a

100% training accuracy. Similar to the inspection method

employed by radiologists, we applied the visual features on

the MR image to train the network. The five input units are

the homogeneity from T2-weighted MR imaging and the

intensities from four MR imagings, namely: T1-weighted

MR imaging, T2-weighted MR imaging, dynamic arterial

phase, and dynamic equilibrium phase. The outputs are the

five categories of hepatic diseases—liver cyst, cavernous

hemangioma, dysplasia in cirrhosis, HCC, and metastasis.

2.4 Input selection

Extracting a lesion region from liver parenchyma using a

computer algorithm is still a difficult task because the

intensities of the four abovementioned MR images are

quite different and random, and the intensity of a lesion

may appear strong in one image but subtle in another. For a

heterogeneous case in particular, varying gray values cause

the border of a region of interest (ROI) to be irregular,

leading to an incorrect calculation of mean values within

the ROI. Furthermore, differences in imaging times make it

impossible to propagate a selected ROI of the same size

and location from a T1-weighted image to T2-weighted,

post-contrast early-phase, and late-phase images.

Fig. 2 Diagnostic flowchart for

hepatic lesions used in a

doctors’ routine check. The

procedure is based on the

intensity and homogeneity of

the MRI signal

Fig. 3 A multilayer feed-forward network used in LiverANN can

automatically find the internal connections between inputs and

outputs by learning from samples using a back-propagation algorithm

was employed. T2H homogeneity of T2-weighted imaging, Ar
arterial, Eq equilibrium, HCC hepatocellular carcinoma

178 X. Zhang et al.



The current version of LiverANN provides a paint

toolbox that allows radiologists to delineate ROIs using a

mouse. A border is drawn along the lesion edge in the

homogeneous case, as shown in Fig. 4a. An estimated

drawing (broken line) is interpolated in order to maintain

the shape of a lesion in the heterogeneous case, as shown in

Fig. 4b. If the lesion is enhanced, the ROI will include the

periphery or normal hepatic parenchyma surrounding the

lesion, as seen in Fig. 4c. In a hepatic MR case, first, the

lesion regions in the T1-weighted, T2-weighted, dynamic

arterial phase, and dynamic equilibrium phase images are

selected by a specialist, and then the program automatically

calculates the average intensity as the intensity in the ROI;

the standard deviation value is inversely proportional to the

homogeneity.

Because all elements of the training dataset must be

scaled appropriately, the four intensities and the T2

homogeneity are normalized into numerical data between 0

and 1 before they are fed into the ANN as inputs. After

normalization,

gin ¼
1

2n
gave; ð3Þ

Din ¼ 1� 1

2n�1
D; ð4Þ

Here, gin and Din are the average intensity and

homogeneity, respectively, in a selected ROI (inputs for

the ANN); n is the bit value of g(x, y); gave is the mean gray

level; and D is the standard deviation of the ROI.

Datasets from 1999 to 2001 at the Medical School of

Gifu University, Japan, were selected. An experienced

radiologist attempted to collect MR images with different

image findings in lesions as much as possible in order to

train the ANN, and randomly selected cases in order to test

the generating ability of the ANN. A total of 50 focal liver

lesions, including liver cysts (n = 10), cavernous heman-

giomas (n = 10), dysplasias in cirrhosis (n = 10), HCCs

(n = 10), and metastases (n = 10), were used to train the

ANN, whereas the remaining 30 cases, which were sepa-

rated into the five categories of liver diseases (each cate-

gory contained six cases), were used to test the

performance of the ANN. The optimum architecture of the

combination of cases was selected through a trial-and-error

process during the training and testing procedures of the

ANN.

2.5 Graphical user interface of LiverANN program

Our software was built using the REALbasic language

running on a Macintosh computer; it can run on Mac OS,

Windows OS, or Linux. Therefore, users can select the

software for their own convenience. As shown in Fig. 5,

the graphical user interface comprises several parts—

image-selecting buttons, one main display window, and six

subwindows (pre-contrast and portal venous phase images

are available as well), drawing tool panels, a data-display

or text-input box, and a disease result indicator. Using the

sendmail function of LiverANN, remotely located radiol-

ogists can easily send unknown data to our research labo-

ratory with information on an unexpected type of lesion.

This function is expected to be one of the most important

resources of retraining data for the ANN. Because the

efficiency of the training process is very high, we can use

these training datasets as tutorials for educating inexperi-

enced radiologists using images in the LiverANN.

3 Results

The output produced by the LiverANN in the case of the

cyst shown in Fig. 1 is indicated in Fig. 6a. Based on this,

the cyst item has the highest output value among all five

possibilities.

Fig. 4 Guidelines for determining the lesion borders of ROI in a a

homogeneous case, b a heterogeneous case, and c an enhanced case

Fig. 5 The graphical user interface of the LiverANN. The main

window changes when one of the four MR buttons corresponding to

the T1- and T2-weighted, dynamic arterial, and equilibrium-phase

images is pressed. The four subimages show the region containing

ROIs, as selected from four MR images by a doctor. The intensities

and homogeneity of the ROIs are calculated automatically. Outputs of

the ANN indicate the likelihood (0–1.0) of each liver disease
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The initial results showed that the LiverANN could

classify 50 cases of the training dataset and 30 test cases

into the five types of focal liver lesions; the training

accuracy in the former set was 100%, whereas the testing

accuracy in the latter set was optimally 93.3% (28/30).

Figure 6a is a correctly classified example of a liver cyst,

and Fig. 6b is an incorrectly characterized HCC. Table 1

shows the difference between the results obtained for the

30 test cases when they were evaluated by an experienced

radiologist and the results obtained when the LiverANN

was employed. The LiverANN wrongly categorized two

HCCs as metastases.

4 Discussion

Focal liver lesions can be accurately detected and charac-

terized with MR imaging. The misdiagnosis made by the

LiverANN may have occurred because some HCCs are

mildly hyperintense in T2-weighted images, moderately

hypervascular in the hepatic arterial phase, and hypointense

in the equilibrium phase. Hypervascular metastases such as

renal cell carcinoma or carcinoid tumor have brisk arterial

enhancement and may be indistinguishable from HCC. The

broad spectrum of enhancement patterns or the morphol-

ogy of HCC makes it difficult to characterize this type of

tumor using the CAD algorithm, and some overlap in

imaging features is observed between HCC and metastasis

in daily clinical practice. Information on other features,

such as the presence of fibrous encompassing capsules or

cirrhotic changes around the focal liver lesions, an elevated

serum alpha-fetoprotein (AFP) level, or a history of

extrahepatic primary cancer, is critical in differentiating

between HCC and metastasis, and such supplementary

information other than the signal intensity and the homo-

geneity of lesions is very helpful to radiologists attempting

to correctly interpret MR images.

It is difficult to collect a sufficient number of clinical

cases at one time or in one place to train the ANN. Our

LiverANN program provides a data-transmitting function

for collecting ANN-training data through a network or via

the Internet. Figure 7 illustrates a data collection system

procedure. The ANN is first trained with a basic dataset on

a Sun workstation in the X Window C language. After the

weights between neurons have been decided, a version of

the LiverANN can be developed under the REALbasic

language and then sent to a hospital to be employed by the

doctors for their routine inspections. If the LiverANN

cannot correctly identify a new case, these data will be

used to retrain the ANN via the sendmail function of the

LiverANN from hospitals. On the other hand, if the case is

correctly identified, it will be omitted because the ANN

already has the ability to deal with such a case. A new

version of LiverANN that has been trained with a new
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Fig. 6 Classification results from the LiverANN for cases of a cyst (a) and hepatocellular carcinoma (b). CYS cyst, HEM hemangioma, DYS
dysplastic nodule, HCC hepatocellular carcinoma, MET metastasis

Table 1 Classification results

for 30 test cases: two cases

judged by a doctor as

hepatocellular carcinomas were

categorized incorrectly as

metastases by the LiverANN

Doctor LiverANN

Liver cyst Cavernous

hemangioma

Dysplasia in

cirrhosis

Hepatocellular

carcinoma

Metastasis

Liver cyst 6 0 0 0 0

Cavernous hemangioma 0 6 0 0 0

Dysplasia in cirrhosis 0 0 6 0 0

Hepatocellular carcinoma 0 0 0 4 2

Metastasis 0 0 0 0 6
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dataset will be sent out to hospitals so as to obtain more

data on which the LiverANN has not been trained. This

loop will be continued until a satisfactory clinical result is

obtained.

Furthermore, including shape or enhancement charac-

teristics in the imaging feature descriptors may also improve

the interpreting ability of the LiverANN in some difficult

cases. It is well established that hemangiomas are identified

by their characteristic peripheral contrast enhancement

rather than by the magnitude of their signal intensity. In the

absence of this unique geographic enhancement pattern, it

would be extremely difficult to differentiate an HCC from a

metastasis. In addition, the enhancement pattern of metas-

tases is highly dependent on the type and vascularity of the

primary cancer. A hypervascular metastasis is often indis-

tinguishable from HCC based on the imaging features alone.

The presence of cirrhosis and a patient’s clinical and labo-

ratory data are helpful in making the diagnosis. The inte-

gration of such additional information into the LiverANN

will be the next step in this study.

We did not include portal-venous-phase images among

the input data used in this study, because hepatic arterial

and equilibrium-phase images often provide sufficient

information on lesion vascularity, and that input data

should be simplified. However, we may need to include

information on portal-venous-phase images to raise the

diagnostic accuracy of the LiverANN, because radiologists

usually consider the three phases of gadolinium-enhanced

images as well as the T1- and T2-weighted images in a

clinical setting.

In this study, although the quantitative ROI data for

focal liver lesions selected manually by radiologists

showed no significant interobserver variability, in order to

rectify possible inconsistencies in diagnosis among radi-

ologists, we plan to identify the ROI by means of an

automated image feature-extraction technique in the next

step.

5 Conclusion

Our initial trial aimed at characterizing focal liver diseases

using the LiverANN program demonstrated the ability of

the program to fuse the complex imaging findings with

different imaging sequences obtained during individual

MR imaging of the liver. By adding different types of input

parameters and training data, the program may be able to

analyze more complicated imaging findings, thereby pro-

viding radiologists with a more useful second opinion. This

program is also useful to radiologists for educational pur-

poses during practical diagnostic procedures.
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