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Abstract

Shape correspondence, which aims at accurately iden-
tifying corresponding landmarks from a given population
of shape instances, is a very challenging step in construct-
ing a statistical shape model such as the Point Distribu-
tion Model. The state-of-the-art methods such as MDL and
SPHARM are primarily focused on closed-surface shape
correspondence. In this paper we develop a novel method
aimed at identifying accurately corresponding landmarks
on 3D open-surfaces with a closed boundary. In particu-
lar, we enforce explicit topology consistency on the identi-
fied landmarks to ensure that they form a simple, consistent
triangle mesh to more accurately model the correspondence
of the underlying continuous shape instances. The proposed
method also ensures the correspondence of the boundary of
the open surfaces. For our experiments, we test the pro-
posed method by constructing a statistical shape model of
the human diaphragm from 26 shape instances.

1. Introduction

The Point Distribution Model (PDM) [9] has become
a very popular tool for statistical shape analysis and has
been widely used in various computer-vision and medical-
imaging applications such as image segmentation [9, 23]
and shape based diagnosis [3, 4, 8, 15, 21]. The ma-
jor challenge in constructing a PDM comes from the step
of (landmark-based) shape correspondence, which aims at
identifying a set of accurately corresponding landmarks
from a population of given shape instances. The non-
linearity of the shape description and shape variation for
most anatomical structures leads to a problem where it is
very difficult to find an optimal solution. This difficulty is
further increased when the shape is a 3D surface.
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In the past several years, many 3D shape correspon-
dence methods have been proposed for PDM construc-
tion [6, 7, 11, 19, 22, 26, 28, 34]. Most of these methods are
aimed at closed-surface shape correspondence. For exam-
ple, both the Minimum Description Length (MDL) [11, 18]
and Spherical Harmonics (SPHARM) [5, 16] methods map
each shape instance to a sphere and reduce the shape corre-
spondence problem to that of parameterizing the sphere. It
is usually difficult to apply such a sphere-mapping step to
open-surface shapes.

In many medical-imaging applications, the structure of
interest bears an open-surface shape with a defined, closed
boundary. The human diaphragm is a typical example of
such shapes. It is an open-surface tissue that separates the
chest and abdomen. It is located beneath the lung and
above the liver, with its edge affixed to the correspond-
ing bone frame (ribs, xiphoid and lumbar), forming a 3D
closed boundary, which corresponds across all shape in-
stances. This is different from the open surface resulting
from the cropping of a 3D object by image perimeter, where
the surface boundary is usually of a 2D form and may not
correspond across all shape instances [27]. The shape and
position of the diaphragm have been related to pulmonary
function in clinical applications. However, the analysis of
the diaphragm is currently hindered by the nature of the un-
derlying shape which is unsuitable for existing shape corre-
spondence methods. Hence, we need a method to perform
the shape correspondence of an open-surface shape with a
closed boundary to construct a PDM.

Related to this paper is the 3D landmark-sliding method
SLIDE [10] that can be used to correspond both open-
surface and closed-surface shape instances. In this method,
each target shape instance is first aligned with a given tem-
plate shape. Based on this alignment, an initial estimate of
the corresponding landmarks is established and a landmark-
sliding framework is developed to refine the initial esti-
mates of corresponding landmarks. Compared to MDL and
SPHARM, this method requires less CPU time and usu-
ally leads to a PDM with better compactness, generality and

1857 
 
2009 IEEE 12th International Conference on Computer Vision (ICCV) 
978-1-4244-4419-9/09/$25.00 ©2009 IEEE



specificity characteristics [10]. However, this method does
not guarantee that the landmarks identified across shape in-
stances have consistent topology. Further, it does not en-
sure that landmarks along the closed boundary of the tem-
plate shape correspond to landmark points along the closed
boundary of the target shape. Also related to this paper are
the works on brain mapping [13, 14, 30], which address
the problem of identifying corresponded landmarks on cor-
tical surfaces, which are open surfaces. However, these
works are highly dependent on the geometric information of
anatomic features such as the gyra and sulci. In this paper,
we address the problem of identifying corresponding land-
marks on smooth surfaces which may have few (or none)
such anatomic features with defined geometric information.

In this paper, we develop a new method to correspond 3D
open-surface shape instances by identifying topologically
consistent landmarks. Specifically, we define landmark-
topology consistency through the triangle mesh representa-
tion of a surface: the landmarks identified from each shape
instance must constitute a valid triangle mesh for this shape
instance when these landmarks are connected in the same
order as in a given template. Starting with a set of 3D
open-surface shape instances in the form of densely sam-
pled point clouds, the proposed method consists of the fol-
lowing steps: (a) Construct a 3D triangle mesh for each
shape instance independently. (b) Map each constructed
triangle mesh to a 2D planar triangle mesh using confor-
mal mapping [1]. (c) Construct an initial estimate of topo-
logically consistent landmarks in the 2D plane followed by
inverse conformal mapping to the 3D shape instance. (d)
Apply a landmark-sliding algorithm to refine the landmarks
while maintaining the topology consistency.

The remainder of the paper is organized as follows: In
Section 2, we formulate the problem by describing the con-
cepts of topology consistency and shape correspondence er-
ror. Section 3 describes in detail the proposed method. We
present our experiments and results in Section 4, followed
by a brief conclusion.

2. Problem Description

The input of shape correspondence is a set of shape in-
stances. As shown in Fig. 1, we represent each open-surface
shape instance S that describes an open-surface shape as:
(a) SP , a dense point cloud defining the entire open surface;
(b) SB , the subset of SP that describe the closed boundary
of the surface; (c) SM , a triangle mesh constructed to ap-
proximate S; (d) SL, the set of landmarks identified by the
shape correspondence method; (e) ST , the triangle mesh
generated by using SL. Different from SL and ST , SM is
constructed independently and may contain different num-
ber of vertices and triangles for each shape instance.

Among these, SP is the original data obtained from man-
ually or automatically segmented medical images. SB and

(a) (b) (c)

Figure 1. Illustration of each representation of a shape: (a) The red
points are the point cloud SP and the blue points are the boundary
points SB . (b) The discrete triangle mesh SM to approximate the
surface S. (c) The landmark triangle mesh ST . Each vertex is a
landmark in SL. Note that SM and ST are not the same.

SM are derived from SP to describe the boundary feature of
the surface and topological nature of the open-surface shape
instance. We use SM to construct the conformal 2D planar
mapping of the surface S. SL and ST are the output of the
proposed method. As in previous research on PDM-based
shape correspondence [3, 4, 9], the identified landmarks SL

may not coincide with any anatomically significant features.
We simplify the problem formulation to correspond two

shape instances: a template U and a target V . For multi-
ple shape correspondence, we can select one shape as the
template and repeatedly correspond each of the remaining
ones to this template. For the template U , we can construct
the triangle mesh UM independent of all other shape in-
stances. We directly set the vertices of UM to be the land-
marks UL, which are fixed in shape correspondence and set
the triangle mesh UT = UM , which defines the triangu-
lation information of connecting identified landmarks into
a triangle mesh in the target shape instance. The problem
can then be formulated as constructing a corresponding set
of landmarks VL on the target surface V that minimize a
pre-defined shape-correspondence error d(UL, VL). In ad-
dition, from VL we can construct a mesh VT by applying
the same vertex triangulation information as in UT . We say
that VL is topologically consistent with UL, if VT is a valid
and accurate triangle mesh representation of V . Particu-
larly, VT must be a simple mesh without any self intersec-
tions. In this paper, we denote each landmark in UL to be
ui = (uix, uiy, uiz) and the corresponding landmark in the
target VL to be vi = (vix, viy , viz), i = 1, 2, . . . , n.

2.1. Shape Correspondence Error

We use 3D thin-plate splines [3, 12, 31] to model the
correspondence error between template landmarks UL and
target landmarks VL. The thin-plate spline bending energy
measures the energy required to deform a volume to match
these two sets of landmarks. In particular, the thin-plate
spline transform finds a mapping t = (tx, ty, tz) from UL

to VL, i.e. vix = tx(ui), viy = ty(ui) and viz = tz(ui) for
i = 1, 2, . . . , n. The thin-plate bending energy is invariant
under any affine transformation. This is suitable for our pur-
pose because we wish to model the non-rigid deformation
observed in biological shapes.
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Further, we find an expectation, VE , for the target land-
marks. Let the expected target landmarks be denoted by
ve

i = (ve
ix, ve

iy , ve
iz), i = 1, 2, . . . , n. In this paper we ob-

tain VE by using a simple feature of the boundary of open-
surface shapes, i.e. the boundary of open-surface shapes
must be corresponded. The surface boundaries of the tem-
plate and target can be derived from point sets UB and VB ,
respectively. Both of them are a 3D closed contour. Note
that the landmarks on the template boundary are fixed. They
are the m surface boundary points in UL and our goal is
to identify m corresponded landmarks along the surface
boundary of V . For simplicity, we denote the m surface
boundary points on the template to be UBL and the identi-
fied m corresponded landmarks on the target to be VBL. In
this paper, we directly extend the 2D landmark-sliding algo-
rithm [33] to correspond these two 3D curves. The only ex-
tension is to use 3D thin-plate bending energy for describing
the shape-correspondence error. We derive the thin-plate
transform t from the corresponded boundary landmarks and
then apply it to all the landmarks in UL to construct VE =
t(UL).

Hence, the shape correspondence error may be defined
in a quadratic form as:

d(UL, VL) =
vT

x Lvx + vT
y Lvy + vT

z Lvz

+
n∑

i=1

λi‖vi − ve
i ‖2, (1)

where vx, vy and vz are the columnized vectors that con-
tain the x, y and z coordinates of the landmarks in VL, re-
spectively. L is the n× n upper left submatrix of

[
K D
DT 0

]−1

,

where the n × n matrix K has elements kij = − 1
8π‖ui −

uj‖ and the n × 4 matrix D = [1n×1,ux,uy,uz ] with
ux, uy and uz being the columnized vectors that contain
the x, y and z coordinates of the landmarks in UL. Since
VE is obtained by simply using the correspondence of the
boundary, we set λi > 0 for all vi ∈ VBL, and λi = 0
otherwise. In this way, the right side of (1) includes the
3D thin-plate spline bending energy in the first three terms
and the last term penalizes the error between the boundary
landmarks of the template and target shapes.

2.2. Topology Consistency of Landmarks

Using the thin-plate bending energy as the shape cor-
respondence error, does not guarantee the preservation of
topology consistency between the template and the tar-
get [32]. For example, in Fig. 2, the landmarks VL shown

in (b) have a finite bending energy with the template land-
marks UL in (a). However, when we connect the landmarks
VL by following the same vertex connectivity as the tem-
plate triangle mesh, we obtain a non-simple triangle mesh
VT with self intersections. Note that we cannot redefine the
connection order in VT to remove self intersections because
this connection order is defined by the template mesh UT .

u1

u2 u3

u4

u5

u6
v1

v2 v3

v4

v5

v6

(a) (b)

Figure 2. Illustration of inconsistency in topology of template
landmarks UL and target landmarks VL: (a) Triangulation of tem-
plate landmarks u1, u2, u3, u4, u5, u6. (b) Triangulation of
corresponding target landmarks v1, v2, v3, v4, v5, v6 showing
self-intersection.

Landmark topology consistency reflects the geometric
homeomorphism between the template and the target shape
instances. Hence, landmark topology consistency should
be included as a critical constraint in shape correspondence
and statistical shape modeling. In Section 3, we introduce
a new approach based on conformal mapping to explicitly
preserve the landmark topology consistency in open-surface
shape correspondence.

3. Proposed Method

The proposed method consists of three main steps: First,
we construct the template landmarks UL and the template
triangle mesh UT from the dense point cloud UP . Partic-
ularly, we adapt the K-means clustering algorithm [17] to
preserve the surface boundary in UT . The same cluster-
ing method is independently applied on the point cloud VP

to construct a triangle mesh VM for the target V . Second,
we derive an initial estimate of corresponded target land-
marks VL by applying the shape-context [2] method to ŨT

and ṼM , the 2D conformal mappings of UT and VM , re-
spectively. Finally, we develop a new aggressive landmark
sliding algorithm to refine VL by minimizing the shape cor-
respondence error d(UL, VL).

3.1. Construction of UL, UT and VM

Many methods have been developed for constructing a
triangle mesh from a dense point cloud. In this paper, we
use an adaptation of the well known K-means clustering al-
gorithm [17] on the dense point cloud. After this, we treat
the sparsely and uniformly (or nearly uniformly) distributed
cluster centers as the vertices to construct a triangle mesh.

The traditional K-means clustering algorithm cannot ac-
curately preserve the boundary of an open-surface: In the
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Surface Points
Cluster Centers(a) (b)

Figure 3. A simple 2D illustration of the constrained K-means
clustering algorithm: (a) Traditional K-means clustering of SP

leads to well distributed cluster centers, but surface boundary
points are not usually included as cluster centers. (b) Constrained
K-means clustering with some cluster centers along the boundary.

K-means algorithm, the cluster centers are derived by aver-
aging the points in a neighborhood and there is no guarantee
that sufficient points along the surface boundary can be in-
cluded as cluster centers. An example is shown in Fig. 3 (a),
where no points along the surface boundary are included as
cluster centers (circled dots). To address this problem, we
adapt the K-means algorithm to a constrained K-means al-
gorithm, which identifies sufficient cluster centers from the
surface boundary as shown in Fig. 3 (b).

As in the traditional K-means clustering algorithm, we
alternately update the cluster centers and the point assign-
ments in each cluster, but add one more step. For the tem-
plate U , in each iteration of updating the cluster centers, we
first estimate the K cluster centers by averaging the points
in each cluster. After this, we further update the cluster cen-
ters that contain points in UB (the surface-boundary points).
Specifically, if a cluster contains any point in UB , we up-
date the center of this cluster by averaging only the surface-
boundary points in this cluster. We alternately repeat this
two-step cluster-center updating operation and the point-
assignment operation until there is no significant change in
the positions of the cluster centers. Using this constrained
K-means clustering algorithm, we can construct a triangle
mesh UT that well represents the underlying surface.

Using the same method, we also independently process
the point cloud of each target shape V to construct a
triangle mesh VM . Note that, there is no correspondence
between the vertices of UT and VM because we process
them independently. In fact, UT and VM may have different
number of vertices. In the next section, we develop a
method to derive landmarks VL and mesh VT from the
target so that they correspond to the landmarks UL and
mesh UT on the template.

3.2. Initial Estimate of VL

We use shape matching based on geometric information
along with conformal mapping to construct an initial esti-
mate for the target landmarks VL. First, we use the Least
Squares Conformal Mapping (LSCM) method of [24] to
flatten the template triangle mesh UT and target triangle

mesh VM to their 2D conformal representations ŨT and ṼM

respectively, as shown in Fig. 4 (a) and (b). With the 2D
conformal maps, we can easily build a 2D parametrization
for the 3D surface.

(a) (b) (c)

Figure 4. An illustration of LSCM conformal mapping and shape-
context descriptor: (a) A 3D mesh of the human diaphragm. (b)
The LSCM conformal map of the 3D mesh. (c) The shape-context
of a landmark ui

Second, we use the correspondence between the bound-
ary landmarks ŨBL and ṼBL to eliminate the translation,
rotation and scaling differences between the template and
the target using Procrustes analysis on the 2D plane. We
then use the shape-context method [2] to find a matching be-
tween all the template landmarks ŨL (on the 2D plane) and
ṼD , a down-sampled subset of points on the target on the 2D
plane. We use the same method described in Section 3.1 to
preserve the boundary while constructing ṼD. We only re-
quire that the number of points in ṼD be larger than or equal
to the number of landmarks in ŨL so that each template
landmark is assigned a corresponding target landmark. To
enforce the requirement that template boundary landmarks
UBL are corresponded to a point along VB , we set the cost
of matching boundary landmarks with non-boundary points
to a very large number. After finding the matches of ŨL in
ṼD , we perform inverse conformal mapping to get a set of
target landmarks on the target.

However, we cannot directly use this set of landmarks on
the target as the initial estimate of VL. It may contain mis-
matches because shape context only considers geometry in-
formation but not spatial topology, as shown in Fig. 4 (c). If
we construct the triangle mesh VT by connecting VL using
the same connection information as UT , the mesh VT may
not be a simple mesh without self-intersections. We use
statistical regression and develop a process of elimination
to remove such pairs (ui, vi). We then use the remaining
matched pairs to establish a topologically consistent initial
estimate for VL.

Specifically, we define the regression cost function as

φ =
n∑

i=1

‖vi − v̂i‖2 + vT
x Lvx + vT

y Lvy + vT
z Lvz, (2)

where L is the same thin-plate spline bending matrix as de-
fined in (1). We calculate the optimal values of v̂i to mini-
mize this cost by equating to 0, the partial derivative of (2)
with respect to v̂. To identify the mismatched pairs (ui,
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vi), we calculate the Euclidean distance ri between each vi

and v̂i. Finally we sort the list of pairs (ui, vi) by decreas-
ing value of ri associated with vi (worst matched pair to
best). We discard the pair (ui, vi) if it satisfies the following
conditions: (i) The pair violates the topology consistency
requirement. For example, in Fig. 2 we discard the pair
(u6, v6). (ii) They are not boundary landmarks. However,
neighboring boundary landmarks may be switched to en-
sure topology consistency. (iii) 30% pairs with the largest
value of ri are considered as mismatches, but we do not
remove all the landmarks on the same triangle in UT .

By this process of elimination, we get UR and VR which
are topologically consistent and representative landmarks.
Finally, we calculate the 3D thin-plate transform between
UR and VR, such that VR = t(UR) and apply this transform
t to all landmarks in UL to get the initial estimate for VL i.e.
VL = t(UL). We now connect the landmarks in VL using the
same triangulation information as UT to get VT .

3.3. Refining VL by Aggressive Landmark Sliding

The initial estimate VL described above is constructed
in the 2D conformal map domain using a shape-matching
based approach. While it preserves the landmark-topology
consistency, it may not minimize the 3D shape corre-
spondence error (1). In this section, we adapt the 3D
landmark-sliding algorithm proposed in [10] to further
refine VL. In this algorithm, all landmarks in VL are
simultaneously and iteratively moved on the surface V to
minimize the correspondence error (1). In every iteration,
we first move each landmark on its tangent plane and
then project the new landmarks back onto the surface V .
More specifically, each landmark vi ∈ VL is moved to
v′i = vi + αipi + βiqi on the tangent plane, where pi and
qi are linearly independent unit tangent vectors and αi and
βi are the sliding distances along these two tangent vectors.
The optimal sliding distances can be found by solving the
following quadratic-programming problem

min
α,β

φ(UL, VL; α, β) = (3)

∑
�∈{x,y,z}

(v� + P�α + Q�β)T L(v� + P�α + Q�β)

+
n∑

i=1

λi‖vi + piαi + qiβi − ve
i ‖2,

subject to constraint

|αi| ≤ ε, |βi| ≤ ε (4)

where,

α = (α1, . . . , αn)T , β = (β1, β2, . . . , βn)T

P� = diag(p1�,p2�, . . . ,pn�),
Q� = diag(q1�,q2�, . . . ,qn�).
λi > 0, if viis a boundary landmark

λi = 0, otherwise.

Note that the second term of (3) only considers the
expected boundary landmarks since λi = 0 for all other
landmarks. This construction ensures that the boundary
landmarks do not move far from the surface boundary.

The constraint (4) is the same as the one used in [10] for
controlling the step length in sliding. However, in this pa-
per, we introduce aggressive landmark sliding. We first set
ε to a large value and perform a step of landmark sliding. If
the topology consistency is broken by the result of this step
of sliding, we replace ε = ε/2 and redo the step of land-
mark sliding. We continue in this fashion until a value for ε
is reached such that the landmark sliding can be performed
without violating the topology consistency or the value of ε
becomes too small to perform any landmark sliding. This is
in contrast to the method used in [10] where the landmark
sliding is restricted to a very small region by setting ε to a
fixed, small value. For projecting v′i back onto the surface
V , we find, from the input dense point cloud VP , a point
that has the smallest distance to v′i. The resulting closest
point is then used as vi for the next iteration of landmark
sliding.

Generally, it is very difficult to directly check the
topology consistency of landmarks in 3D. We utilize the
2D parametrization rendered by the conformal mapping.
Specifically, we find, from triangle mesh VM , the closest
point to v′i. This point denoted as v′′i , may be located
within a triangle or along the sides of a triangle. Since v′′i ,
i = 1, 2, . . . , n are on the triangle mesh VM , we can ap-
ply the conformal mapping to find their mapping ṽ′′i . If
the triangle mesh built on the point-set ṽ′′i , i = 1, 2, . . . , n
using the same connection order as in UT has any self-
intersections, we know the landmark topology is inconsis-
tent with the template mesh UT .

4. Experiments

We perform our experiments on a set of 26 human di-
aphragm shape instances, each described by approximately
100, 000 to 250, 000 points. Identifying the diaphragm from
torso CT images is a very important task in computer-aided
diagnosis [35]. One of the reasons for the difficulty in per-
forming shape correspondence on the diaphragm is the ac-
quisition of input data. This is due to the nature of the region
near the boundary of the diaphragm which is very cluttered
in CT images and difficult to label. We obtained the 26 di-
aphragm shapes as follows: First CT images of the torso
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are obtained while the subject is holding their breath such
that the lung volume is as large as possible for easy detec-
tion. Next, a semi-automatic method is used to roughly seg-
ment the diaphragm shape from the CT images. Finally, the
shape is manually updated by adding, deleting and moving
the identified points. This is a very tedious and time con-
suming task. In the future, we plan to use the proposed
method to construct and apply a PDM to facilitate the auto-
matic segmentation of the diaphragm.

In our experiments, we use the proposed method and
SLIDE to correspond the same 26 diaphragm shape in-
stances and perform a comparison. We then construct and
evaluate the point distribution model (PDM) defined by the
mean shape μ and covariance matrix derived from the cor-
respondence results. For the proposed method, we set the
initial value of ε = 50 in (4). Landmark sliding is set to
stop after 20 iterations and we identify 842 corresponded
landmarks on each of the 26 diaphragm shape instances.
SLIDE was used with the recommended default parameters
and asked to identify the same landmarks by selecting the
same template shape for both methods. This ensures that
the mesh connecting landmarks in the proposed method can
be used to connect landmarks for SLIDE.

μ σσ−3

M
 =

 1
M

 =
 2

+3

Figure 5. Comparison of the proposed method with SLIDE: The
shape space of the PDM created using SLIDE is shown in red (top
row for M = 1, 2) and the proposed method is shown in green.
M = 1, 2 are the first two principal directions, μ is the mean shape
and σ is the standard deviation along a principal direction. Note
that SLIDE produces landmarks without connecting them into a
mesh. Since the landmarks identified are the same for both meth-
ods, we apply the same triangulation order to the SLIDE shapes.

In Fig. 5 we show a few significant instances from the de-
formable shape space described by the PDMs constructed
using the proposed method and SLIDE. Particularly, we
show the shape instances after deforming the mean shapes
along their first two principal directions, respectively. The

magnitudes of deformation along these two directions are
chosen from [−3σ, +3σ], with σ being the standard de-
viation of the PDM along a principal direction. We in-
clude two movies (slide.mpg) and (method.mpg) in the sup-
plemental material to dynamically demonstrate these shape
spaces along the first five principal directions. As shown in
Fig. 5, it is clear that the two PDMs describe similar shape
spaces, but differ in two aspects. First, the shape space de-
scribed by the PDM of SLIDE allows shape instances with
self-intersecting surfaces and unnatural folding in some re-
gions, as is the case for−3σ for M = 2, while the proposed
method always leads to a simple triangle mesh with no self-
intersections. Second, it can be observed that the boundary
of the diaphragm shape is not well described by the PDM
constructed using SLIDE and shows some folding, while
the proposed method leads to a smooth boundary. The case
of +3σ for M = 1 in Fig. 5 is an example of such inac-
curacy in describing the boundary of the shape. The major
reason for this inaccuracy, in SLIDE, is that no care is taken
to represent the boundary sufficiently. In fact, in SLIDE
there are no constraints that require the landmarks on the
boundary of the template shape to only correspond to points
on the boundary of the target shape.
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(a) (b)

Figure 6. Comparison of the proposed method with SLIDE: Mea-
sures of topology error Δt and boundary error Δb. Δt = 0 for the
proposed method which is described by the horizontal axis in (a).
The horizontal axis represents the 26 shape instances.

In this paper we introduce two new measures to check
whether the identified landmarks can well represent the
topology and the boundary of each diaphragm shape in-
stance. Without correct topology and good representation
of the boundary, the identified landmarks cannot well repre-
sent the shape instance. First, we define the topology error
as:

Δt = Number of triangles in VT that

are not topologically consistent with UT .

This measure evaluates the ability of a method to correctly
represent the topological homeomorphism of the underlying
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shape. Second, we define the boundary error, as

Δb =
∑

vi∈VBL

‖vi − v(i)‖

where, v(i) is the closest point along VB to vi. This mea-
sure evaluates the ability of a shape correspondence method
to represent the boundary of an open-surface shape. We
apply these two new measures to all 26 shape instances and
show the measures of Δt and Δb in Fig. 6. It is clear that the
proposed method performs better than SLIDE. Specifically,
we can see in Fig. 6 (a) that 13 shape instances have topol-
ogy inconsistency using SLIDE while the proposed method
does not produce any topology errors. Further, in Fig. 6
(b) we can see that the proposed method shows a large im-
provement over SLIDE for Δb.
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Figure 7. Compactness, generality and specificity measures for the
proposed method and SLIDE.

In [29], three quantitative measures are introduced for
evaluating the shape correspondence results by examin-
ing the compactness, generality and specificity of the con-
structed PDM. Figure 7 shows these three measures, where
we find that SLIDE results in better compactness, gen-
erality, and specificity (smaller values) than the proposed
method does. This is in contrast to what we obtained above.
The major reason is that, without a reference to any ground
truth, these three measures only evaluate the properties of
the resulting PDM and do not check whether the resulting
PDM can really represent the underlying shape. This limita-
tion has been pointed out in several previous works [20, 25].
In other words, these three measures are only meaning-
ful when the identified landmarks can well represent the
original shape instances, both topologically and geometri-
cally. More specifically, we can clearly see from Fig. 8 that
landmarks identified by SLIDE do not correctly model the
whole diaphragm by missing the area near the boundary,
leading to a PDM with lesser variation and hence a bet-
ter compactness measure. This also makes the size of the
mean shape resulting from SLIDE smaller than that from
the proposed method along the vertical direction, which
gives SLIDE an undesirable advantage in terms of these
three measures. As mentioned above, in this case, the corre-
spondence results from SLIDE are in fact incorrect and the
results from these three measures are misleading.

Finally, we asked a medical expert majoring in human
anatomy with over 20 years of experience to perform a qual-
itative evaluation of the proposed method. Specifically, we

(a) (b)

Figure 8. (a) The PDM resulting from SLIDE is unable to model
the shape boundary correctly. The identified landmarks (red) are
far from the boundary (blue) and hence less variation is observed
in the SLIDE PDM. (b) The mean shapes resulting from SLIDE
(red) and the proposed method (green) have the same size in the
horizontal and depth directions but not the vertical direction giving
SLIDE an advantage in the values of compactness, generality and
specificity.

asked the expert to comment on the deformable shape space
described by the PDM created using the proposed method
on the 26 diaphragm shape instances. We changed the mag-
nitudes of deformation along the first five principal direc-
tions from−3σ to +3σ to deform the mean shape. The ex-
pert identified three major criteria for evaluating this PDM:
(a) the smoothness of the diaphragm surface, (b) the sym-
metry of the surface boundary and, (c) the similarity of the
shape space described by the PDM to the general shape of
the diaphragm. The expert observed that each shape de-
scribed by the PDM had a smooth surface reflecting the real
case of a diaphragm and expressed satisfaction with this as-
pect of the PDM. Further, the expert commented that each
surface boundary appeared to have good symmetry in the
region along the ribs. However, some symmetry was lack-
ing in the part of the boundary near the spine. The expert
also asserted that each shape in the deformable shape space
can be considered as a naturally occurring case of the di-
aphragm. Finally, he observed that the mean shape of the
PDM can be considered as a common instance of the di-
aphragm shape. These comments show that the PDM suc-
cessfully reflects the variation observed in the natural di-
aphragm shape.

5. Conclusion

In this paper, we presented a novel method to address the
important problem of open-surface shape correspondence.
This method can identify a good triangle mesh from each
shape surface such that (a) the vertices of these triangles are
the desirable corresponded landmarks and, (b) all meshes
are generated using the same connection information. Par-
ticularly, we used least squares conformal mapping to facil-
itate the checking and preservation of the landmark topol-
ogy consistency, which is critical for constructing a simple,
valid mesh without self intersections. In addition, we used
the 3D thin-plate bending energy to model the landmark
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correspondence error and developed an iterative landmark
refinement algorithm to reduce this error. We tested the pro-
posed method on 26 human diaphragm shape instances and
showed that (a) its performance is better than that of a prior
related method and, (b) the PDM constructed using the pro-
posed method leads to a valid representation of the natural
variation observed in the diaphragm.
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