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Abstract—Several structures of artificial neural networks 
(ANNs) with different training patterns were investigated so as 
to compare their performances on detecting the cluster of 
microcalcifications (CM) on mammography. 150 region-of-
interests (ROIs) around mass containing both positive and 
negative microcalcifications were selected for training the 
network by a standard or modified error-back-propagation 
algorithm. A rule-based triple-ring filter (TRF) was used for 
evaluating the performances of these two different types of 
methods. The results showed that the shift-invariant artificial 
neural network (SIANN) was the best ANN model to detect 
CM, while SIANN and TRF had different ability of detecting 
microcalcifications. In a practical detection of 30 cases with 40 
clusters in masses, the sensitivity of detecting CMs was 
improved from 90% by our previous method to 95% by using 
both SIANN and TRF. 

Keywords- mammogram; microcalcification; mass; 
artificial neural network; triple-ring filter analysis; 
computer-aided diagnosis (CAD) 

I.  INTRODUCTION  
 Microcalcifications are often the first and sometimes the 

only radiographic findings in early, curable breast cancers 
[1]. Furthermore, the existence of a cluster of 
microcalcifications (CM) in mass on mammograms is one of 
important features for distinguishing the breast cancer 
between benign and malignant. However, it often fails to be 
detected because of its low subject contrast in denser 
background and small quantity of microcalcifications. To 
assist radiologists in detecting clustered microcalcifications 
on mammograms, a number of research groups have 
attempted to analyze mammographic abnormalities with 
digital computers [2, 3]. An automated computerized scheme 
based on triple-ring filter and feature extraction techniques 
had been developed by our group [4]. We also applied a 
conventional artificial neural network (ANN) to improve the 
detection performance [5]. However, the issue to be solved 
was to efficiently detect the CMs in mass area with least 
number of false positives (FPs). Several structures of ANNs 
with different training patterns were investigated in this 
experiment so as to compare their performances on detecting 

the CMs on mammography. The shift-invariant artificial 
neural network (SIANN) had been shown to be a powerful 
tool to eliminate over half of FP clusters without any loss of 
the true-positive (TP) clusters [6]. In this work, we combined 
the SIANN with TRF method in our CAD system to get a 
higher performance of detecting clusters in mass area, and 
other two conventional ANNs were also discussed in this 
paper. Although there are many papers combining image 
manipulation filters with neural networks, or using RBF 
networks [7, 8] instead of BP [9], our paper focus on the 
different effects by training with various patterns using a 
same training method rather than trying different approaches. 

II. MATERIALS AND METHODS 

2.1Case selection 
 40 cases with clusters in mass were selected from the 

database at Aichi Cancer Center Hospital in Japan. Digitized 
mammograms with a pixel size of 0.1 mm in 10 bits were 

 
 

Fig. 1 A mammographic image with a mass area 
(square) that contains a cluster of microcalcifications.  
TP: true-positive cluster of microcalcifications, FP: 
false-positive cluster of microcalcifications. Normal: 
normal tissues. 
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used for detecting microcalcifications, and the compressed 
0.4-mm-pixel-size images were employed for extracting 
mass candidates in our CAD scheme [10]. All the images 
were normalized by contrast correction from heterogeneous 
background as shown in Fig. 1. 

2.2 Artificial Neural Network and Its Architecture 
Artificial neural network (ANN) is a structure of 

simulated neurons that are connected together somewhat in 
the same way as natural neurons are thought to be connected 
in the brain. The capability and advantages of ANNs are due 
to their special features including nonlinear, adaptive, and 
parallel processing. Each neuron of ANNs receives inputs 
either from a number of other neurons or from an external 
stimulus. The weighted sum of these inputs passes through a 
basis function and the resulted argument is applied to an 
activation function that finally yields the outputs of the 
neurons. The manner in which connections are made 
between these neurons (viz. the topology) defines the flow of 
information in the network and is called the architecture of 
the network. Useful architectural configurations include 
single layer, multilayer, feed-forward, feedback and lateral 
connectivity. Indeed, it is relatively straightforward to build 
an ANN model from input–output data. Behavior of a 
network depends greatly on the interactions between these 
building blocks. There are three types of neuron layers: 
input, hidden, and output layers. The more the layers are 
used, the greater the power the network possesses will be. On 
the other hand, an excessive number of layers often appear to 
be counter- productive. It may cause slower convergence in 
the back-propagation learning. Generally speaking, three-
layer network could be adequate as a universal approximator 
of any nonlinear function.  

In this research, we develop several structures of artificial 
neural networks so as to compare their performances on 
detecting the CM in mass area.  

2.2.1  ANN for classification of microcalcification 
ANN model has been proven to be very effective in 

solving the problem of classification in medical images [11, 
12]. The architecture of this ANN is that of a totally 
connected layered feed-forward network with only one 
output unit, where the input units are the normalized pixel 
values from 2D images corresponding to the time and 
frequency domains. Figure 2 shows that a three-layer feed-

forward neural network contained an input layer with 121 

units, one hidden layer with 60 units, and one output layer 
with 1 unit. A region-of-interest (ROI) with input size 11*11 
contains a microcalcification so-called true positive (TP) or 
gland tissue so-called false positive (FP) with its center of 
gravity in the middle of ROI, and each input unit is scaled to 
a numerical value from 0 to 1 that is proportional to the gray 
value of a pixel after contrast correction. Each node in layer 
X (where X=0 means inputs, X=1 means first hidden layer of 
units, etc.) is connected to all the units in layer X+1. 

An error back-propagation (EBP) algorithm [9] with 
generalized delta rule was used to train the neural network. A 
unit in the output layer is 1, only if the units in the input layer 
have a microcalcification at the center of ROI, otherwise is 0. 
The input values of ANN can be selected not only from 
spatial domain but also frequency domain. A Fast Fourier 
transformation (FFT) is applied to calculate the power 
spectra of a 2D image (a) as shown in Fig.3, from which its 
visualized spectra image (b) is symmetric about the origin, 
therefore only one half of the spectra (c) is needed. The 
power spectra is converted using a logarithmic scale to 
reduce the dynamic range of the data. 

2.2.2 ANN for detection of microcalcification 
In an actual scanning by a ROI on mammographic 

images for searching a microcalcification, the position of a 
microcalcification is not always at the center of ROI. 
Therefore, the output is designed to be able to indicate the 
location of TP microcalcification as shown in Fig. 4. This 
feed-forward neural network contained an input layer with 

 
 

Fig. 2 ANN for classification of microcalcification 
contained an input layer with 121 units, one hidden layer 
with 60 units, and an output layer with 1 unit.  

 
 
Fig. 4 ANN for detecting microcalcification with Input 
Layer=121 units, Hidden Layer=60 units and Output 
Layer=121 units;  + means the output  is 1, the others 
are 0.  

 
a            b              c   

 
Fig. 3 A structure of FFT-ANN with Input Layer=128  
units, Hidden Layer=64 units and Output Layer=1 unit. 
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121 units, one hidden layer with 60 units, and an output layer 
with 121 units. A unit in the output layer is 1, only if the 
corresponding unit in the input layer is at the center of a 
microcalcification, otherwise is 0. 

2.2.3 ANN for detecting clustered microcalcification 
In a practical inspection of breast cancers, the existence 

of a cluster of microcalcifications is one of important 
features for distinguishing the breast cancer between benign 
and malignant. Therefore, to detect CMs is much more 
useful than individual microcalcification in clinic. 

2.2.3.1 Conventional full-connected neural network 
The structure of ANN used in section 2.2.1 and 2.2.2 is 

modified for detecting CMs with a ROI size change to 
21x21. 2D image inputs are calculated both in spatial domain 
and frequency domain, and the output of ANN is regarded as 
a CM if an input ROI contains over 3 microcalcifications. 

2.2.3.2 The shift-invariant neural network 
Since back-propagation (BP) algorithm was introduced in 

1985, there have been many variations attempted, with the 
aim of making it run faster and less likely to become stuck in 
local minima. A shift-invariant artificial neural network had 
been described by Zhang et al. [6], which was a layered feed-
forward neural network with local interconnections as 
illustrated in Figure 5. The basic structure of the SIANN was 
similar to that of the Neocognitron model developed by 
Fukushima et al.[13], which was quite successfully applied 
to the handwriting recognition. However, the SIANN was a 
feed-forward neural network trained with EBP. Though the 
architecture looks like a standard 3-layer BP network, there 
is a crucial difference: the hidden units embody a different 
type of neurons altogether. These units have a receptive field: 
that is, they have their maximal response (generally 1) for 
some particular point in the input space, and this response 
tails off as the input value moves away from this point. As 
shown in Fig. 5, units in the input layer and output layer 
corresponding to pixels of the input and output were divided 

into groups. Every unit in a subsequent layer was connected 
with the units of a small region called the receptive field in 
every group in the preceding. 

2.3 Training methods and datasets 
It has long been known that general networks of units 

provided a much richer computation capacity. But without 
the applicable learning methods, the ANN could not work as 
our expectation. The numbers of input patterns selected 
teacher signal and how they are arranged are crucial to the 
training procedure.  In this experiment we selected 150 
region-of-interests (ROIs) around mass containing both 
positive and negative microcalcifications for training the 
network, as well as the same populations of CM datasets. 
Another 30 cases were selected for testing the trained ANN. 

For the conventional full-connected neural network, 
ANN is trained by use of the well-known backpropagation 
(BP) algorithm [9]. The selection of hidden layer units is 
decided by the complexity of the case data. If the number of 
units is less than half of the input units, the learning 
procedure of the ANN becomes slow and convergence is 
difficult, and it results in failure of learning CM teacher 
signal even in the training dataset. Therefore, we selected 60 
or more hidden units in the ANN used in section 2.2.1 and 
2.2.2. The network learning rate was set to 0.9, momentum 
factor 0.3, and the number of training iterations was always 
at 5000 to 7000, with a 100% training accuracy. 

A back-propagation algorithm with a generalized delta 
rule was modified to train the neural network with the shift-
invariant-connection constraint, and the sigmoid function 
was used as the activation function for each processing unit 
in the neural network. In the training process, the internal 
parameters of the connections between layers were adjusted 
iteratively so that the difference between the output values 
and the desired results was minimized. The training was 
stopped at 6,000 iterations to avoid overtrained problem. The 
SIANN was trained by an improved error back-propagation 
algorithm [6] with a 21x21-17x17-13x13 structure.  

The ANN's ability to detect microcalcifications was 
assessed using receiver operating characteristic (ROC) 
analysis to calculate the area under the ROC curve (AUC) 
and the results were compared with a logistic rule-based 
triple-ring filter (TRF) model, which was a particular cone-
shaped vector pattern detector by calculating the features 
from direction and magnitude of the gradient vector [4]. 

III. RESULTS AND DISCUSSION 
The consistency test indicated that the neural networks 

for the classification and detection of single 
microcalcification are able to learn all of the 150 patterns 
that were used for the training.  

For the classification of microcalcification by the ANN 
in Fig. 2, when the microcalcification is located at the center 
of ROI, the output value of ANN is very high, while with the 
shifting position of microcalcification, its output becomes  

 
 

Fig. 5 Example of a three-layer shift-invariant network 
connection with receptive size=3, group=1, Input 
Layer=7x7 units, Hidden Layer=5x5 units and Output 
Layer= 3x3 units.                                            
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lower than the threshold that leads to be regarded as FP, as 
shown in Fig. 6. It is not strange that such ANN could not 
work well in case of the shifting position of 
microcalcification, because it did not learn these patterns in 
the training datasets. If we change the inputs into the power 
spectra shown in Fig. 3, the result indicates that the output 
value of ANN changes only a little as shown in Fig. 7. This 
is due to the fact that the power spectra of a 
microcalcification has lost the location information in the 
frequency domain and been centralized at the original point. 

For the detection of microcalcification by the ANN in 
Fig. 4, the location of a single microcalcification could be 
detected properly with a sensitive rate of detecting TP at 
86%. Nevertheless, this structured ANN fails to detect the 
CMs even if it is in the training procedure. Although it is 
able to learn a single microcalcification at a random place, 
the combination of more than three microcalcifications as a 
CM is very large, and to prepare all these combinations in 
training datasets is impossible. The same phenomenon can 

happen in the frequency domain and the FFT-ANN in Fig. 3 
can successfully learn a limited number of teaching samples 
and detect the CMs correctly which are not included in the 
training datasets. This is due to the centralization effect of 
FFT on the power spectra and it can centralize every 
microcalcification at different locations into the original 
point. As shown in Fig. 8, the different combinations of two 
microcalcifications at the upper side have the same power 
spectra at the lower side. That is why we can train the 
network with limited examples to detect the clusters which 
are in the category invariant, rather than requiring the neural 
network to learn all the gradations of location, shape, size, 
etc. which are necessary in spatial domain. 

SIANN has a spatial architecture but differs from the 
above full-connected ANN: units in the input layer and 
output layer corresponding to pixels of the input and output 
were divided into groups. Every unit in a subsequent layer 
was connected with the units of a small region called the 
receptive field in every group in the preceding. In Fig. 9, unit 
C1 in the subsequent layer received inputs from the receptive 
field C1' in the preceding layer with black square illustrated. 
We should notice that the connections of C1 were localized. 
Therefore, a local variation such as C2 and T1 in the input 
image did not affect the outputs of the units whose receptive 
fields did not include the local variation, so the detection of 
clustered microcalcifications was highly independent of the 
quantity and position of the microcalcifications. In learning 
procedure, we can train the SIANN with individual 
microcalcification C1 and tissue T1 or with clusters C1, C2 
and tissue T1 at any place of the input image, which was 
impossible to a conventional full-connected neural network. 

 
 

Fig. 6 The output values of the ANN in Fig. 2 
corresponding to the input ROIs with different located 
microcalcifications. 

 
 

 Fig. 7 The output values of FFT-ANN corresponding to 
the input ROIs with different located microcalcifications. 

 
 

Fig. 8 A training samples of FFT-ANN by transferring 
the spatial signals to power spectra. 

 
 

Fig. 9 The interconnection between two groups in two  
layers. C1, C2 and T1 are disconnected each other. 

 

 
 

Fig. 10 Illustration of a process of learning in SIANN in 
different iterations. 

 

217



Figure 10 shows a process of learning in SIANN: The 
network can learn the background very quickly, and then 
tries to emphasize a foreground teacher signal to black(>0.9) 
and other foregrounds to white(<0.1) by adjusting the 
strengths of the connections between the nodes of the 
network. Cluster training then cluster detecting is the only 
mode for FFT-ANN to detect CMs. However, we found that 
single training then cluster detecting mode is also available 
in SIANN. 

Figure 11 shows some CMs detection results by SIANN, 
where the brown square is the size of output layer. In a 
practical detection of 30 cases with 40 clusters in masses, 
304 out of the whole 537 true microcalcifications were 
detected by both methods, and the other 61 and 87 of true 
microcalcifications were detected by TRF and SIANN 
methods, respectively, with about 120 FP microcalcifications 
per image. Using both methods, 84% (452/537) of true 
positives could be picked out. The number of FPs was 
decreased to 10.2 per image while preserving 432 true 
positives after using the variable-ring filter. 36 clusters were 
obtained by the detected microcalcifications from TRF and 
variable-ring filter, and two other clusters could be found by 
adding SIANN. Therefore, the sensitivity of detecting 
clusters was improved from 90% by our previous method to 
95% by using both SIANN and TRF with the same number 
of FPs of 0.85 per image.  

 

IV. CONCLUSIONS 

This study demonstrated that the SIANN method was the 
best ANN to detect clustered microcalcifications. Combining 
our previous TRF method with SIANN was able to detect 
5% additional true clusters compared with the TRF method 
only, because it detected microcalcifications by learning 
samples from datasets instead of calculating by explicit 
mathematical model. Further efficient training has to be done 
for gaining the potential high generation ability of SIANN. 
Moreover, it was found that the conventional ANN was also 
an effective way in eliminating FPs in mass area.  
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Fig. 11 A CMs detection results by SIANN, where the  
brown square is the size of output layer. 
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