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Numerous publications and commercial systems are available that deal with automatic detection of pul-
monary nodules in thoracic computed tomography scans, but a comparative study where many systems
are applied to the same data set has not yet been performed. This paper introduces ANODE09 ( http://
anode09.isi.uu.nl), a database of 55 scans from a lung cancer screening program and a web-based frame-
work for objective evaluation of nodule detection algorithms. Any team can upload results to facilitate
benchmarking. The performance of six algorithms for which results are available are compared; five from
academic groups and one commercially available system. A method to combine the output of multiple
systems is proposed. Results show a substantial performance difference between algorithms, and demon-
strate that combining the output of algorithms leads to marked performance improvements.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction with surgical intervention there is a high chance of long-term sur-
Computer-aided detection (CAD) has become one of the most
active research areas within medical image analysis. The detection
of pulmonary nodules from volumetric computed tomography (CT)
scans is one of the most studied CAD applications (Sluimer et al.,
2006). There are several reasons for the interest in this task. First,
lung cancer is the most deadly cancer and early detection may
be the most promising strategy to reduce lung cancer mortality.
With CT, small lung nodules can be identified. If these nodules
are malignant, they usually represent early stage lung cancer and
ll rights reserved.
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vival of the patient (MacMahon et al., 2005). Second, the advent of
multi-detector row CT scanners with fast gantry rotation times has
made it possible to scan the entire chest in a few seconds, well
within a single breath-hold. This generates high quality scans with
isotropic voxels around 0.35 mm3, that can be obtained with a low-
dose and high patient throughput. As a result, there are currently
many ongoing trials that investigate the efficacy and effectiveness
of lung cancer screening with low-dose CT among high risk indi-
viduals (Infante et al., 2009; van den Bergh et al., 2008; Gohagan
et al., 2004; Henschke, 2007). In addition to screening, chest CT ex-
ams are being used more often for a wide range of diagnostic tasks.
It is always important to report findings of nodules in these scans,
and this can be a cumbersome, time-consuming task because the
scans contain 300–500 slices. It appears best to use dedicated visu-
alization settings (sliding maximum intensity projections of
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around 10 mm) for optimal detection performance (Gruden et al.,
2002), but such settings may not be optimal for the detection of
other abnormalities. CAD of nodules may therefore become a prac-
tical necessity for time-efficient interpretation of chest CT scans.

Although at first glance the detection of nodules may seem a
fairly straightforward task, it turns out that nodules come in many
forms. There are nodules that are easy to detect, for example a
round, well-marginated, solid nodule of 4–10 mm in diameter, lo-
cated in the periphery of the lung. But much smaller nodules are
also visible on CT, and there are nodules with complex vascular
attachments located in regions with large vessels, and part-solid
and non-solid nodules with densities only slightly above those of
the surrounding lung parenchyma. If a scan contains abnormalities,
the lungs may contain many lesions that are somewhat nodular in
appearance, but unrelated to lung cancer. It is therefore difficult, if
not meaningless, to compare the performance of two nodule CAD
systems that have been tested on different databases. Another rea-
son why it is hard to compare results obtained on different dat-
abases is that many studies, especially older ones, have used
scans with thick sections, in the range of 2.5–10 mm. For the detec-
tion of nodules, using scans with such thick sections is not recom-
mended because they introduce a partial-volume effect for smaller
nodules and prevent the use of visualization techniques such as
sliding maximum intensity projections and volume rendering
which improve nodule detectability (Peloschek et al., 2007).

A large number of systems for nodule detection have been pro-
posed in the literature (Li et al., 2008; Arimura et al., 2004; Armato
et al., 2001, 2002; Bae et al., 2005; Bellotti et al., 2007; Brown et al.,
2003; Dehmeshki et al., 2007; Enquobahrie et al., 2007; Farag
et al., 2004; Ge et al., 2005; Ko and Betke, 2001; Kung et al., 2004;
Lee et al., 2001; Matsumoto et al., 2006; McCulloch et al., 2004; Men-
donça et al., 2007; Murphy et al., 2007; Novak et al., 2004; Osman
et al., 2007; Paik et al., 2004; Retico et al., 2008; Suzuki et al., 2003;
Wei et al., 2002; Wiemker et al., 2005, 2002; Ye et al., 2007; Zhang
et al., 2007; Zhao et al., 2003; Fotin et al., 2009). In addition, several
commercial systems for nodule detection are available and many
workstations that radiologists routinely use to interpret CT scans
provide on-board nodule detection capabilities. The reported perfor-
mance of systems varies tremendously. In a recent literature survey
(Li, 2007), a comparison of nine systems yielded sensitivities from
70% to 90% with a range of 0.5 to 15 false positive detections per scan.
Even when the same CAD system is evaluated, results can vary sub-
stantially. A study from 2005 (Lee et al., 2005) measured perfor-
mance of the ImageChecker CT LN-1000, developed by R2
Technology (Sunnyvale, CA). This technology has been acquired by
Mevis (Pewaukee, WI) and recently released as Visia CT Lung. The
system was applied to 70 scans with 78 nodules. CAD detected 47
(60%) of these and produced 1.56 false-positive nodules per scan.
In another study (Das et al., 2006), the ImageChecker CT (no version
number was given) obtained 73% sensitivity and six false positives
(FPs) per scan. Finally, in a recent study (Godoy et al., 2008) the re-
sults for ImageChecker CT V2.0, in a study partly funded by R2 Tech-
nology, achieved a sensitivity of 87.7% for lung cancer nodules with a
diameter of 4 mm and larger with either solid or semi-solid mor-
phology, at a false positive rate of 0.9 per scan.

A major step forward to more objective measurement of CAD
performance is the creation of a publicly available database by
the Lung Image Database Consortium (LIDC) (Armato et al.,
2004). Annotated chest CT scans are available on-line at http://
imaging.nci.nih.gov/ncia/. So far, this collection contains 400 scans.
One of the LIDC groups also made data available at http://
www.via.cornell.edu/databases/lungdb.html. Because the data
and annotations are freely available, companies and research
groups may report their results on different subsets of the dat-
abases and will almost certainly perform evaluation in different
ways, making the results again difficult to compare.
The purpose of this paper is to present a new database of state-
of-the-art CT scans from a lung cancer screening trial, and a frame-
work for the evaluation of CAD algorithms applied to this data set.
To alleviate the problem that observers tend to show substantial
disagreement on what constitutes a nodule (Armato et al., 2009),
we introduce the concept of relevant and irrelevant findings. Irrel-
evant findings are nodules that are unlikely to be cancer, such as
calcified nodules or very small nodules. These irrelevant findings
have been marked in the database and if a CAD system detects such
a lesion, the output of the system is ignored (i.e., not counted as
either a true positive or a false positive). Evaluation is performed
using free-response receiver operating characteristic (FROC) analy-
sis and the results are computed automatically after a list of the
coordinates of findings, along with a degree of suspicion generated
by the CAD system is submitted to the ANODE09 web site (http://
anode09.isi.uu.nl). This ensures that every system is evaluated in
exactly the same way, using the same software, and that the re-
sults are directly comparable. The only factors affecting differences
in results then would be the CAD system, not the data or the details
of the evaluation procedure. This paper describes the database and
the evaluation procedure in detail in Sections 2 and 3. In Section 4
six systems whose findings have been submitted are described and
their results are given in Section 5. They include recent and older
CAD systems developed by academic groups and one commercial
system.

The other major contribution of this paper is a generic method
to combine the output of multiple CAD systems, outlined in Sec-
tion 4.7. This is perhaps an even more compelling reason to have
organized the ANODE09 study. There is in fact no reason to assume
that a single CAD scheme would be optimal for nodule detection. It
is more likely that different methods have complementary
strengths, and the availability of multiple system’s outputs on a
single database allows us to test this in practice. It will be shown
that combining CAD systems can substantially improve the overall
performance. The implications and limitations of this study are dis-
cussed in Section 6 and we draw conclusions in Section 7.
2. Data

The ANODE09 data set consists of 55 anonymized CT scans. Five
scans are examples and are made available with radiologist anno-
tations. These scans are not used in the evaluation of algorithms
and can be used for training CAD algorithms or optimizing their
internal settings, if desired. The remaining 50 scans are for testing.
The reference annotations for those 50 scans are not publicly
available.

All data has been provided by the University Medical Center
Utrecht and originates from the NELSON study, the largest CT lung
cancer screening trial in Europe. Current and former heavy smok-
ers, mainly men, aged 50–75 years are included in this study. Scans
were acquired on a 16 or 64-slice CT scanner (Philips Medical Sys-
tems, Cleveland, OH) using a spiral mode with 16 � 0.75 mm or
64 � 0.75 mm collimation. The entire chest was scanned in 4–
10 s using a caudo-cranial scan direction to minimize breathing
artifacts. Scans were performed in full inspiration, without spiro-
metric control. Exposure settings were low-dose: 30 mAs and
120 kVp (volume CT dose index, CTDIvol = 2.2 mGy) for patients
weighing less than 80 kg, and 30 mAs at 140 kVp for those weigh-
ing over 80 kg (CTDIvol = 3.5 mGy). Axial images with a 512 � 512
matrix were reconstructed at 1.0 mm thickness and 0.7 mm incre-
ment, using a moderately soft reconstruction kernel (Philips B) and
the smallest field of view that included the outer rib margins at the
widest dimension of the thorax. As a result of this scanning proce-
dure, where the field of view is adjusted to patient size, the resolu-
tion in the x and y-direction varied from 0.59 to 0.83 mm with an

http://imaging.nci.nih.gov/ncia/
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average of 0.71. The data is therefore nearly isotropic. More infor-
mation about the acquisition process and the screening study from
which the data originates is available elsewhere (Xu et al., 2006;
van Iersel et al., 2006).

The large majority of the ANODE09 scans were randomly se-
lected from the entire Utrecht database of the NELSON screening
program. A small number of scans were randomly picked from
the 1% of scans in the entire database which contained the largest
number of annotations. Scans that contained evident interstitial
lung disease, which can lead to the presence of hundreds of usually
small nodular findings, were excluded. The reason for adding some
scans with more than the average number of findings is that we
aimed to have a reasonable number of nodules in a test set that
was not too large, to make web-based distribution of the data
feasible.

It should be noted that the ANODE09 data set contains rela-
tively few larger nodules, especially compared to other databases
on which results for nodule CAD systems have been reported in
the literature. We did not, as was done for example in Fotin et al.
(2009), specifically add cases with larger nodules. The ANODE09
set can be considered representative of findings among asymptom-
atic heavy smokers.

3. Annotation and evaluation

3.1. Annotation process and irrelevant findings

In the NELSON study, nodules – defined as a round opacity, at
least moderately well marginated and no greater than 3 cm in
maximum diameter (Austin et al., 1996) – were divided into four
groups (Xu et al., 2006). Class 1 contained nodules with fat, benign
calcifications or other benign characteristics. The other groups con-
tained nodules without benign characteristics. Class 2 nodules had
a volume below 50 mm3. All volume measurements were done in
3D on Siemens workstations using the Syngo Lungcare software
package (Somaris/5 VB 10A-W). If 3D segmentation failed, a diam-
eter was drawn on an axial section. Class 3 contained solid, part-
solid or non-solid nodules with a volume between 50 and
500 mm3. The equivalent diameters1 are 4.57 mm and 9.84 mm,
respectively. Larger nodules fell into class 4 and participants with
such a nodule were referred to a pulmonologist for work-up and
diagnosis. Participants with a class 3 nodule were invited for a
3 month repeat scan. Finding a nodule in class 2 did not change
the follow-up, and there was no lower size limit for class 2 nodules.
Therefore not all of such small nodules may have been annotated.
Scans were read by an experienced observer and by a second expe-
rienced observer in an unblinded fashion.

From our experience in the NELSON study we have learnt that it
is not easy to distinguish nodules from findings that mimic a nod-
ule. This is supported by the literature, (e.g. Lee et al., 2005). Most
of these findings are scars, but other examples are vessels with a
local outpouching and pleural plaques. The LIDC study (Armato
et al., 2004; Armato et al., 2007; Armato et al., 2009) has made ex-
plicit the variation among radiologists in the identification of lung
nodules. In the LIDC study four observers indicated nodules in 90
chest CT scans in a two step process, first blinded, next unblinded,
so that they could see the results of the three other readers. It was
found (Ochs et al., 2007) that for nodules P3 mm, there were 174
nodules where at least 1 of 4 observers said it was a nodule, for 146
of those at least 2 of 4 observers agreed, for 121 at least 3 agreed
and for 90 all four agreed. These results indicate that there is a
1 The effective or equivalent diameter of a nodule is the diameter of a sphere with
the same volume as a 3D segmentation of that nodule. Throughout this paper we give
the size of nodules in mm and these lengths always mean effective diameter and are
usually derived from a 3D segmentation.
large number of nodules for which human expert observers agree,
but an approximately equally large group of findings about which
there is no consensus among observers. If a CAD system placed a
marker on such a nodule, should it be considered a true positive
or a false positive?

To partly circumvent this problem, we introduced a second cat-
egory of findings in the ANODE09 study. We call this category
‘irrelevant findings’, as opposed to ‘relevant’ or actionable findings,
i.e. the nodules that a CAD system definitively should detect. Any
CAD marks in regions around irrelevant findings are ignored in
the evaluation, as explained in Section 3.2. There are three types
of irrelevant findings: findings that mimic a nodule but that an ex-
pert observer believes not to be a nodule, nodules with benign
characteristics (class 1 in the NELSON protocol), and nodules that
are too small to be relevant.

Almost all very small lung nodules are benign and are normal
pulmonary lymph nodes or small granulomas (Henschke et al.,
2004). Here one needs to use a threshold for volume or effective
diameter. We decided to use the threshold of 4 mm effective diam-
eter, because it is the one currently recommended by the Fleisch-
ner society (MacMahon et al., 2005) and many CAD systems use
this threshold as well. This is a slightly smaller size than what is
used in the NELSON study. In some scans with many nodules, some
nodules were also listed as irrelevant (and thus ignored in the eval-
uation) although they did meet all the requirements of relevant
nodules. This was done to prevent the results of a CAD algorithm
on a few scans dominating the assessment of its performance.

The rationale for introducing irrelevant findings is that it is un-
fair or at least debatable to call a mark on such a finding a false po-
sitive. Accurate segmentation of nodules is an extraordinarily
difficult task (de Hoop et al., 2009) and therefore in ANODE09 a
mark on a nodule slightly below 4 mm in diameter according to
our segmentation procedure will not count as an error. Similarly,
a mark on a calcified nodule may be appreciated by some radiolo-
gists and should not count as an error. As it is difficult to distin-
guish scarring and other abnormalities from nodules that may
represent lung cancer, it would be unfair to count a mark on such
a lesion as wrong as an obvious false positive that is placed, for
example, on a vessel bifurcation.

To implement this, two observers annotated in a blinded fash-
ion all 55 ANODE09 scans using the NELSON annotations as a basis.
The majority of relevant findings were already contained in the
NELSON annotations. Findings that were not in the NELSON anno-
tations were added, and all findings were labeled as relevant or
irrelevant. One observer was a very experienced reader from the
NELSON trial, the other one was a radiologist in training. A third
observer, an experienced radiologist, resolved cases where the
two observers disagreed. All findings were segmented with an in
house implementation of an algorithm comparable to (Kostis
et al., 2003), where the parameters were adjusted interactively
by a human operator until a satisfactory segmentation was ob-
tained. Findings below 4 mm were listed as irrelevant. There was
no lower size limit specified, but in practice the smallest annotated
irrelevant nodules have a diameter around 2 mm. In the 50 test
scans of the ANODE09 set we recorded 207 relevant and 433 irrel-
evant findings. In the five example scans 39 relevant nodules and
31 irrelevant findings were annotated.

For each annotation the scan name, x, y, z coordinates of the
point clicked by the observer and diameter were stored. In addi-
tion, for each relevant finding it was recorded if it was in contact
with the pleura (29%), a fissure (17%), or a vessel (42%). This was
done based on visual assessment by one observer. It is especially
difficult to judge if a nodule is in contact with vasculature. Proba-
bly all nodules are in contact with very small vessels close to or be-
low the resolution of a CT scan, so it is hard to draw the distinction.
This issue is not so critical; the categorization was only made to al-
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low us to define different groups of nodules and report perfor-
mance of methods for different subsets: pleural nodules, peri-fis-
sural nodules, vascular nodules and isolated nodules. Note that a
nodule can belong to more than one category of the first three. A
nodule is isolated if it is not in contact with the pleura, a fissure
or a vessel. This was the case for 20% of all nodules. Nodules were
also divided into small and large nodules. The cut-off point was
chosen to be 5 mm. At this point, 45% of nodules were large.
Although the difference between a 4 or 5 mm nodule may seem
small, note that it corresponds to almost a doubling in volume.
Few nodules were above 7 mm (10%) and very few above 9 mm
(2%). The densities of nodules varied, from calcified (irrelevant
findings) to solid, to part-solid and non-solid. Part-solid and non-
solid nodules were not included as separate categories as these
were relatively rare among the relevant findings. Examples of dif-
ferent types of nodules and irrelevant findings are given in Fig. 1.
3.2. Evaluation: hit criterion

The results of CAD systems that have processed the test scans
must be submitted on-line in the form of a text file with a set S
of findings, specified by a scan name (test01 to test50), a 3D posi-
tion (x, y, and z coordinate) and a degree of suspicion p. In order to
limit the amount of computational processing required for the
evaluation, only the 2000 most suspicious findings are analyzed.
In the evaluation procedure it is determined for each finding if
Fig. 1. Examples of relevant and irrelevant findings. In every box a nodule is displayed
center point using a lung window (center �600 HU, width 1600 HU). The top row shows t
and (c) a peri-fissural nodule of 4.8 mm (the thin line visible on each view is the fissure
attachments; (e) a ground-glass nodule of 5.4 mm (a relatively rare finding and there
(18.4 mm). The third row shows nodules that were too small (below 4 mm) to be relevan
row (j–l) shows three examples of calcified nodules. Calcification is a benign character
window level it is evident that the nodules are too bright (dense). The last row shows s
thickening and a (o) a nodular abnormality next to an emphysematous bulla, unrelated
its distance to any nodule (relevant finding) in the scan is less than
1.5 times the radius of that nodule. If so, this signifies a hit. The fac-
tor 1.5 is used to make sure a ‘near hit’ is allowed, and to compen-
sate for the fact that nodules are not perfectly spherical while
distances between center points are used in the computations.
We experimented with higher and lower values for this factor
but found the overall results to be very stable for a wide range of
values.

If a hit on a relevant finding is produced, the finding will count
as a true positive (TP) and increase the overall average sensitivity
of the algorithm. The relevant finding is then removed from the
reference set so that it can ‘hit’ only once. If no hit is produced, it
is determined if the distance of the finding to any irrelevant finding
in the scan is less than 1.5 times the radius of that finding. If so, the
finding does not count as true positive, nor as false positive; it will
simply be discarded. Otherwise, the finding will be considered a
false positive (FP).
3.3. FROC analysis

Results are evaluated with free-response receiver operating
characteristic (FROC) analysis (see Operating Characteristic Analy-
sis in Medical Imaging, 2008, Chapter 5). This means that the sen-
sitivity (the fraction of true nodules in all test scans detected by the
system, given by TP/n where n is the total number of relevant find-
ings in all scans, so n = 207 in this study) is plotted as a function of
in a sagittal, coronal and axial view, 35 voxels (approximately 25 mm) around the
hree small nodules, (a) an isolated nodule of 4.4 mm; (b) a pleural nodule of 4.2 mm
). The second row shows three large nodules, (d) a nodule of 5.9 mm with vascular
fore not used as a separate category in this study) and (f) a large pleural nodule
t. Nodules measure (g) 3.2 mm, (h) 3.5 mm, and (i) 2.3 mm, respectively. The fourth
istic and therefore these were considered irrelevant findings. Even with the used

everal lesions that were not considered nodules, but (m) apical scarring, (n) pleural
to lung cancer.
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the average number of false positive markers per scan (given by FP/
m where m is the total number of scans, so m = 50 in this study). To
obtain a point on the FROC curve, only those findings of a CAD sys-
tem whose degree of suspicion p P t, where t is a threshold, are se-
lected, and the number of false positives FP and true positives TP is
determined, according to the procedure outlined in Section 3.2.
Each unique value p in S defines a unique point on the FROC curve,
using that p value as the threshold t. Between these points, straight
lines are drawn to produce the FROC curve. The point with the low-
est false positive rate is connected to (0,0). From the point with the
highest false positive rate, the FROC curve is extended by a straight
horizontal line.

3.4. Scoring system

To extract a single score from the FROC curve, we measure the
sensitivity at seven predefined false positive rates: 1/8, 1/4, 1/2, 1,
2, 4, and 8 FPs per scan. Note that since we connect points on the
FROC with straight lines as outlined above, we can always exactly
compute these sensitivities from the curve, even if there is no
threshold t that precisely produces these false positive rates. These
seven sensitivities are averaged to obtain an overall score of a sys-
tem. Clearly a perfect system will have a score of 1 and the lowest
possible score is 0. Most CAD systems in clinical use today have
their internal threshold set to operate somewhere between 1 and
4 false positives per scan on average (most systems do not allow
the user to vary the threshold). To make the task more challenging,
we included lower false positive rates than those used in clinical
practice in our evaluation. This determines if a system can also
identify a significant percentage of nodules with very few false
alarms, as might be needed for CAD algorithms that operate
autonomously.

From the previous exposition, it should be clear that to obtain a
good score, systems should include enough findings in their results
to reach the point of 8 FPs per scan. It is also recommended to in-
clude enough distinct values for the degree of suspicion p to pro-
duce a decent number of unique points on the FROC curve. In the
extreme case that all findings are assigned the same p value, there
will be only one point on the curve defined, and a straight line will
be drawn from (0,0) to this point, and a horizontal line will extend
from that point to the right.
4. Methods

In this section a brief description is provided of six methods that
have been applied to the ANODE09 data set. These methods are
listed as A–F in the remainder of this paper. Two more methods
have been submitted (Schneider et al., 2009; Dolejsí and J. Kybic,
2009) but their performance was much lower than that of the
other systems and therefore they have not been included in this
analysis. For each method the main steps of the algorithm are gi-
ven. It is also listed what training data was used. If available, typ-
ical performance of the system on previously used evaluation data
is provided.

This section also presents a general method to combine the out-
put of multiple CAD systems.

4.1. Method A: Fujitalab

This method was developed at Gifu University, Japan. A key ori-
ginal element in this detection approach is the analysis of nodule
patterns with second-order local autocorrelation features in 3D
space and multi-regression analysis. The second-order local auto-
correlation features were expressed as a feature vector calculated
from the voxel values in a 3 � 3 � 3 region. From a region of this
size 235 combination patterns can be obtained, excluding combi-
nations which can be obtained by parallel movement of the center
of the region. For each combination, the voxel values were multi-
plied, and the result was expressed as a component of the feature
vector.

Using multi-regression analysis, the weighting factor for these
235 elements and a constant value were determined to indicate
the training values. The training value was defined as the likeli-
hood of nodules. A nodular shadow gave a 3D Gaussian distribu-
tion for the training output; on the other hand, a normal shadow
gave a zero output.

The complete scheme involved the following steps: Segmenta-
tion of lung region; 3D matched filtering using 3D Fourier Trans-
forms; 3D gradient concentration filtering; identification of initial
candidates of nodules; false-positive reduction; analysis of the
nodule images from the 235 patterns using the multi-regression
analysis; calculation of mutual correlation between the training
pattern and the estimated image; elimination of false positives
using a rule-based approach; and calculation of the final detection
results.

The lung region was segmented with gray-scale thresholding
and 3D component labeling. The gradient concentration filter
was designed to enhance rounded convex regions by measuring
the degree of convergence of the gradient vectors around a point
of interest. However, this method of using gradient concentration
filters for 3D image processing is time-consuming and the segmen-
tation results are not very satisfactory. Therefore, an improved gra-
dient concentration filter that limits the region in which the degree
of convergence is calculated was used in this study. This limited re-
gion was considered to be the one that possibility includes nodules
such as rounded convex regions. The calculation time could be
shortened by limiting the calculation to a given region. Addition-
ally, good segmentation results were obtained in this case. As for
the nodules, the output value of the degree-of-concentration
showed a high value compared with a blood vessel region. Then,
pixels with a high output value of the degree-of-concentration fil-
ter were used as starting points for a region growing technique and
in this way candidate regions were obtained.

Image features, i.e. size, degree of sphericity, aspect ratio, mean
value of the degree of convergence, and the maximum value of the
degree of convergence, were used for elimination of false positives.

Next, the autocorrelation features and multi-regression analysis
was applied to the remaining candidates. The output of multi-
regression is expected to be a continuous value; hence, the com-
parison between the training patterns obtained in multi-regression
and the output also emphasized the nodular shadows. False-posi-
tives were therefore further eliminated by using the correlation va-
lue and the volume of the remaining candidates.

For training, the five example cases from the ANODE09 study
were used. The CAD system was implemented in C/C++. The aver-
age processing time per case is 10 min on a PC with 16GB memory
and a 2.0 GHz Opteron dual processor.
4.2. Method B: region growing volume plateau

This method was developed at the University of Bari, Italy, in
the MAGIC-5 research project (Bellotti et al., 2007). The method
has been published (Bellotti et al., 2007) and was slightly modified
for this study.

The system consisted of three steps: (1) the lung parenchymal
volume was segmented in the whole CT volume; (2) a region grow-
ing algorithm was iteratively applied to the segmented volume to
detect candidate nodules; (3) a double-threshold and a neural net-
work were applied to reduce false positives and classify the
findings.
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The lung parenchymal segmentation started with a simple-
threshold 3D region growing applied to the CT volume. The result
is a binary mask of the respiratory system, containing the trachea,
the bronchi, and the lungs. The next step was the segmentation of
the external airways (trachea and bronchi) by a 3D region growing
with wave-front simulation and suitable stop conditions, allowing
a proper handling of the hilar region. Particular attention was given
to detecting and solving the problem of the apparent fusion be-
tween the lungs, caused by partial-volume effects. 3D morphology
operations ensured the accurate inclusion of all the nodules (inter-
nal, pleural, and vascular) in the segmented volume.

The second step detected candidate nodules inside the seg-
mented volume. This functionality was implemented by a region
growing algorithm with an inclusion rule given by the logical
AND of two rules: a voxel was included in the region if its density
averaged with its first order neighbors was larger than a threshold
t1, and a voxel was included in the region if its density was larger
than a threshold t2.

The threshold t1 was dynamically defined for each nodule can-
didate. Starting from an initial value, t1 was decreased to obtain a
curve providing the volume as a function of the threshold. In gen-
eral, this curve shows a decrease followed by a plateau due to dif-
ference in density between the background and the nodule
candidate. From this curve it is possible to infer the best t1 value
as the smallest in the range of the plateau.

The t2 threshold and the starting value of t1 were chosen in or-
der to maximize the detection rate (the fraction of selected nodules
with respect to the total number of nodules diagnosed by the radi-
ologist). The seed points were searched automatically as follows:
the segmented volume is scanned until a voxel matching the inclu-
sion rules (with thresholds t2 and t1) was found; this voxel was
used as seed point and the growth was started. Once the region
was completely grown, it was removed from the scan and stored
for further analysis. Then the search for new seed points was re-
started. This process was iterated until no more seed points match-
ing the inclusion rules were found.

For each candidate nodule the following features were calcu-
lated: sphericity, ellipticity, maximum intensity, intensity standard
deviation, Shannon entropy, volume, maximum radius. Almost all
the FPs findings refer to candidates with too few voxels or to
non-spherical candidates and could be easily ruled out by a sim-
ple-threshold on the volume and the sphericity. A further reduc-
tion of false detections was obtained by means of a classification
step carried out by a supervised two-layered feed-forward neural
network, trained with a gradient descent learning rule and with
a sigmoid transfer function. The output of the neural network
was used as degree of suspicion for each candidate.

Initially, results based on the training data described in Bellotti
et al. (2007) were submitted to the ANODE09 organizers. This is
the training data also used by methods C and D. Later it was found
that training the system with the example scans of the ANODE09
data set produced slightly better results on those example sets
(tested through cross-validation) and therefore these example
scans were used in the final submission presented in this paper.

The method runs in an average of 15 min per scan on an Intel
Xeon Dual Quad Core 2.6 GHz CPU” with 16 GB of RAM, using only
a single core. The implementation is in C++ using Root-CERN Data
Analysis Framework, an open-source C++ framework developed at
CERN for high energy physics data analysis.

4.3. Method C: Channeler Ant model

This method has been developed by researchers from the Uni-
versity of Torino, Italy and CEADEN in Cuba within the framework
of the MAGIC-5 research project (Bellotti et al., 2007). The system
is aimed at segmentation of generic 3D objects of unknown shape
and can therefore be adapted to the automated search for lung
nodules in low-dose CT scans.

The training data consisted of a set of low-dose lung CT scans
collected by the Pisa Center of the ITALUNG-CT trial, the first Italian
randomized controlled trial for the screening of lung cancer (Pegna
et al., 2009). The CT scans were acquired with a 4-slice spiral CT
scanner (Siemens volume zoom) according to a low-dose protocol
(tube voltage: 140 kV, tube current: 20 mA, mean equivalent dose
0.6 mSv), with 1.25 mm slice collimation. Slices were recon-
structed at 1 mm thickness, using a medium sharp reconstruction
kernel (Siemens B50f). The number of slices per scan was approx-
imately 300, each slice being a 512 by 512 pixel matrix, with pixel
sizes ranging from 0.53 to 0.74 mm. The scans were annotated by
experienced radiologists with a dedicated annotation and visuali-
zation tool (Gori et al., 2007b).

The method started with lung segmentation. The lung paren-
chyma was identified by means of a 3D region growing method
and a wave-front algorithm for the definition of the lung surface
on the inner side.

The Channeler Ant model (Cerello et al., 2008) was used as a
segmentation method for the vessel tree and the nodules candi-
dates. Ant colonies were released on selected position of a 3D ma-
trix, i.e. the anthill. Each ant behaves according to a predefined set
of rules (Cerello et al., 2008) and releases a quantity of pheromone
while moving in the 3D environment defined by the lung volume.
When the colony was extinct and no more voxels matched the re-
quired conditions to become anthills, the information provided by
the pheromone map was analyzed. Ants explore (i.e. live in) a 3D
environment described in terms of positions and intensities of vox-
els. Their life cycle is a sequence of atomic time steps, during which
ants move from one voxel to one of its 26 neighbors. The behavior
of ants was defined by a set of rules that specify how they move in
the environment, how much pheromone they release before mov-
ing to another location, when they reproduce or die. The environ-
ment is defined by the voxel image intensities, which can be
thought of as the amount of available food for the colony: there-
fore, voxel intensities should be progressively consumed when
the number of visits increases. This mechanism, required to make
the colony evolve and explore the environment, was implemented
in a complementary way: whenever the limit to the maximum
number of visits in a voxel was reached, the voxel was no more
available as a destination.

The ant colony started evolving from a voxel at the root of the
vessel tree. When all the ants in the colony have died, the process
stopped and the segmented object was removed from the original
image and its coordinates were added to a list. In the remaining
image, a voxel with intensity greater than a predefined threshold
became the new anthill and a new ant colony was deployed. If
the number of voxels of an object was large with respect to the
maximum expected size of a nodule, as it happens with the bron-
chial and vascular trees, the object was processed and smaller con-
nected objects are looked for. The process finished when all the
voxels inside the matrix with intensity above the threshold had
been analyzed. From the segmented objects five features were ex-
tracted: number of voxels, maximum intensity, average intensity,
standard deviation of intensity and sphericity. A feed-forward arti-
ficial neural network was implemented in order to classify the seg-
mented objects.

A limitation of the method is that nodules with diameter smal-
ler than 3 mm attached to the vascular tree cannot be detected.
When the system was applied to the training data set, using
cross-validation, a sensitivity of 46% and 64% was obtained at an
average of 2 and 6 false positives per scan, respectively.

The Channeler Ants run in an average of 550 s per CT scan on an
iMac with a 2.4 GHz Intel Core 2 Duo processor and 2 GB RAM. The
software is implemented in C++ as an extension of the Root func-
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tionality and shares its code repository with the previously de-
scribed method.

4.4. Method D: Voxel-based neural approach

This method was jointly developed by researchers from INFN
and the University of Pisa, Italy, and a researcher from Bracco
Imaging S.p.A. within the MAGIC-5 research project (Bellotti
et al., 2007). The method is described in Retico et al. (2009), Gori
et al. (2009). A subset of the ITALUNG-CT data set (Pegna et al.,
2009) that was also used in method C was available to train and
validate the system.

First, lung nodules were partitioned in two main classes,
depending on their location in the lung. A nodule was labeled
either as internal if fully contained in the lung parenchyma or as
juxtapleural if connected to the pleura. The internal and juxtaple-
ural nodule classes surely included the ANODE09 categories of iso-
lated and pleural nodules, respectively. Nodules belonging to the
other ANODE09 categories (peri-fissural and vascular) could either
fall into the internal or into the juxtapleural nodule class.

The system dealt differently with internal and juxtapleural nod-
ules, by means of two dedicated procedures: CADI for internal and
CADJP for juxtapleural nodules. Both are three-step procedures
(Buscema, 2004; Gori and Mattiuzzi, 2008; Gori et al., 2007; Retico
et al., 2008; Retico et al., 2009; Gori et al., 2009):

1. Lung segmentation: an approach based on thresholding, region
growing and morphological operators is implemented, once the
scans have been isotropically resampled. In order to outline the
shape of the pleura irregularities (including juxtapleural nod-
ules), the lung boundaries were not smoothed. The identified
lung mask, including vessels and airway walls, was used for
CADI, whereas its boundary was used for CADJP.

2. Candidate nodule selection:
� CADI: internal nodules were modeled as spherical objects

with a Gaussian profile, following the approach proposed
in (Li et al., 2003); the 3D matrix of data was filtered with
a multi-scale filter function built to discriminate between
spherical objects and objects with planar or elongated
shapes. The local maxima of the 3D filtered matrix were
the internal candidate nodule locations. A large number of
false positives were included at this stage, above all cross-
ings between blood vessels.

� CADJP: to identify juxtapleural candidate nodules, pleura
surface normals were constructed and each voxel was
assigned a score proportional to the number of normals
intersecting in it. To deal with noise, cylinders with Gaussian
profile were considered instead of segments (Paik et al.,
2004). The local maxima of the 3D score matrix were the
juxtapleural candidate nodule locations. A large number of
FPs was found, mostly due to irregularities in the pleura sur-
face (e.g. apical scars, pleural thickening and plaques) and
movement artifacts.

3. FP reduction: an original procedure, the Voxel-based neural
approach (Gori et al., 2007; Retico et al., 2008; Retico et al.,
2009; Gori et al., 2009), was developed to reduce the number
of FPs in the lists of internal and juxtapleural candidate nodules.
First, a region of interest (ROI) including voxels belonging to the
candidate nodule was defined from each location provided by
the previous step. For internal candidate nodules, a simple pro-
cedure based on relative thresholding was implemented, while
for juxtapleural candidate nodules a morphological opening-
based algorithm was used. The basic idea is to associate to each
voxel of a ROI a feature vector constituted by the intensity val-
ues of its 3D neighbors and the eigenvalues of the gradient
matrix and of the Hessian matrix. Feature vectors were then
classified by a three-layer feed-forward neural network which
is trained to assign each voxel either to the nodule or normal
tissue target class. A ROI was assigned a degree of suspicion p,
defined as the percentage of voxels tagged as nodule by the
neural classifier.

The final list of findings was simply obtained by merging the
output lists of findings generated by CADI and CADJP.

The training data used for CADI consisted of 30 internal nodules
contained in 15 CT scans, whereas 28 nodules belonging to 14 CT
scans were used for CADJP. The diameters of these nodules were
in the 4–12 mm range; in particular, the 65% of them was in the
4–6 mm range. Calcified solid nodules were not considered. As
only a very small number of part-solid or non-solid nodules were
annotated in the available data set, they were not included.

System performance was evaluated on a prediction set of thirty
other scans extracted from the ITALUNG-CT data set, containing 35
internal and 32 juxtapleural nodules. A sensitivity of 78% and 70%
was measured at 8 and 4 false positive detection per scan, respec-
tively (Gori et al., 2009).

The algorithm for detecting internal nodules runs in an average
of 12 min and the algorithm for juxtapleural nodules requires
15 min per scan, both running on a Dual Opteron 2.5 GHz machine
with 4 GB of RAM, using a single core. The systems were developed
in C++ using the Insight Toolkit (http://www.itk.org/), an open-
source framework for segmentation and registration of medical
images, while the neural networks were implemented using FANN
(Fast Artificial Neural Network) (http://leenissen.dk/fann/), an
open source neural network library.

4.5. Method E: ISI-CAD

This method was developed at the University Medical Center
Utrecht, the Netherlands, by the group who organized the AN-
ODE09 study. The method is described in detail in Murphy et al.
(2007), Murphy et al. (2009).

First the scan was subsampled to isotropic resolution and axial
slices of 256 by 256. The lungs were segmented by region growing
and post-processing, including morphological smoothing of the
lung boundaries (van Rikxoort et al., 2009). To extract nodule can-
didates, the shape index and curvedness were computed at a fixed
scale of 1 voxel. Voxels for which these values are within preset
ranges are clustered into a candidate structure. This procedure
yielded on average around 700 structures per scan.

False-positive candidates are removed by means of a two-step
approach using k-nearest neighbor classification (kNN). The kNN
classifiers are trained using features of the image intensity gradi-
ents and gray-values in addition to further measures of shape in-
dex and curvedness profiles in the candidate regions. The initial
classification step uses a small number of relatively simple features
to quickly reduce the most obviously incorrect candidates. These
are not further processed. After this first stage around 80 candi-
dates per scan remain. The second classifier employs more features
of higher complexity in order to classify the more ambiguous
remaining candidates as accurately as possible. A total of 135 fea-
tures were initially considered as being potentially useful. For both
classification steps, sequential forward floating selection was em-
ployed in the training stage to identify the most useful features.
A total of eight features were selected for the initial classification,
with 19 features being chosen for the final classifier.

The training data consisted of data from 722 scans from the
NELSON screening program, which is the same data source as the
ANODE09 data set, giving this method a unique advantage over
the other methods considered in this paper. The complete set of
NELSON annotations were used as reference for training the CAD
system. The ANODE09 scans are from different subjects that those

http://www.itk.org/
http://leenissen.dk/fann/
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in the training data. In previous work (Murphy et al., 2009), the
method was tested on 813 NELSON scans and detected 80% of
annotated nodules at an average of 4.2 false positive detections
per scan.

The method is implemented in C++ and the required computa-
tion time per scan is about 2 min for lung segmentation and 2 min
for nodule analysis using a single core of a 3 GHz processor in a PC
with at least 2GB RAM.

4.6. Method F: Philips Lung Nodule CAD

The final method in this paper is a commercially available algo-
rithm. We evaluated the Philips Lung Nodule CAD option that is
part of the Lung Nodule Assessment (LNA-K023785) application
that runs in the CT workstation called Extended Brilliance Work-
space or EBW (Philips Medical Systems, Cleveland, OH). This is a
general purpose viewing and processing workstation for medical
images with several packages for dedicated CT image analysis
on-board of which nodule analysis is one. The software produces
a number of markers per CT scan. This number cannot be adjusted
(as is the case in most commercial CAD software). The software
also does not return voxel coordinates. The markers were pre-
sented in a list box as CAD1, CAD2, CAD3, and so on, depending
on how many marks were available for a particular case. It was
our impression that items higher in this list corresponded to more
suspicious findings. In order to convert the software output to a
format suitable for ANODE09, we therefore proceeded as follows.
Two medical students processed the 50 ANODE09 cases and lo-
cated the markers in a separate software program to obtain
approximate voxel locations. A finding that was listed as CAD1 re-
ceived a likelihood of 1, a finding that was listed as CAD2 received a
likelihood of 1/2, and so on. In this way, the first point of the FROC
curve that will be generated consists of only the CAD1 marks of all
cases, the second point on the curve consists of CAD1 and CAD2
marks, and so on. Note that it cannot be taken for granted that
the first finding of one scan has the same absolute relevance of
the first finding of another scan. Thus the real FROC of the system
will necessary be unpredictably different, and will probably be
slightly better than what is reported here. The only point that we
know for sure to be correct is the point with the lowest false posi-
tive rate at the highest sensitivity, where all marks are used.

The Philips Lung Nodule CAD comes with extensive documenta-
tion on its use and describes the results of clinical studies to inves-
tigate its effectiveness. The documentation is brief, however, about
the working of the algorithm. It states that the scheme consists of
four principal parts. First, the lungs are segmented. Next, seed
points are determined from 2D analysis of slices. From these seeds,
3D features and metrics are computed. Finally, the list of candi-
dates is reduced by filtering each candidate on its features and
metrics and the application of simple accept/reject rules. From this
description, we believe the method is comparable to the algorithm
outlined in two publications by Wiemker and co-workers (Wiem-
ker et al., 2002; Wiemker et al., 2005). The characteristics and total
number of training scans that were used to develop the accept/re-
ject rules is unknown.

In a clinical study where four sites contributed 110 subject
cases, the system was found to yield between 5 and 8 false positive
markers per case and have a sensitivity of around 60% for nodules
that were determined by a consensus panel and around 36% for all
nodules indicated by the radiologists in the study. These results are
reported in the documentation of the EBW but a literature refer-
ence is not given.

The algorithm takes 40–60 s per scan, running on a central ser-
ver where the web portal version of EBW resides. From the status
messages provided by the softweare, it seems about half of that
time is spent on the lung segmentation.
4.7. System combination

Like many tasks in medical image analysis, nodule detection is a
complicated problem that can be approached in many different
ways. The detection algorithms outlined above indeed appear sub-
stantially different. If multiple methods focus on different aspects
of a problem, it is not unlikely that a proper combination of their
output would yield a higher performance than any of the methods
stand-alone.

To investigate this, we propose a way to combine the results of
multiple nodule CAD systems without access to their internals, like
the feature values of candidates that are input to an internal clas-
sifier. The proposed blending method employs only the findings
(coordinates and degree of suspicion p for each finding) and infor-
mation about the performance of individual systems. It uses this
performance information in such a way that systems with better
performance are implicitly weighed more heavily in the combina-
tion. Without such knowledge, making a proper combination of
systems with widely different performance levels is difficult.

More precisely, we assume that, before combining, the results
of a CAD system on an evaluation set with known truth are avail-
able. Let pi, i = 1, . . . ,n denote the likelihood of each CAD finding.
Every unique value of p in the set of n findings corresponds to a
point on the FROC curve of the system, as explained in Section 3.3.
For every unique p value we can compute the number of true pos-
itives TP when we consider all findings with pi P p as positive. We
can also compute the number of false positives FP we obtain at this
threshold (disregarding irrelevant findings). Now we associate
with each p a value

f ðpÞ ! TP
FPþ TPþ 1

; ð1Þ

where the factor +1 has been added in the denominator to avoid
division by zero in the exceptional situation that all findings are
irrelevant, in which case both TP and FP equal zero. The values
f(p) are approximately equal to the probability that a finding in
the evaluation set with likelihood p or higher represents a true nod-
ule. Such probabilities are natural measures to combine.

To combine systems, we compute f(p) for every finding from
every system. All findings are sorted so that we have fi, i = 1, . . . ,n
and fi P fj if i < j. Starting at fi with i = 1, it is checked for all findings
fj, j = i + 1, . . . ,n if they correspond with fi. In this study we used the
simple rule that findings within five voxels of each other (and obvi-
ously located in the same scan) are corresponding. A more elabo-
rate criterion, such as the one used to compute the FROC curves
in this study, could be used instead, but this is not possible as no
segmentations or effective diameters of the input findings are
available. If two findings fi and fj correspond, we set

fi ! fi þ fj;

remove fj from the list of findings and continue the procedure. It is
easy to see that this is conceptually similar to averaging the proba-
bilities for each finding across all systems, where undetected find-
ings correspond to a zero probability: we add up the findings we
are able to match across systems and if a system does not detect
a particular finding, nothing will be added. Note that systems with
low performance have f values that are close to zero for (nearly) all
their findings, and these systems are therefore automatically
weighed less heavily in the combination.
5. Results

The results for all systems are tabulated in Table 1. There is con-
siderable variation in the overall scores. System E clearly outper-
forms the other schemes. The results for the different classes of



Table 1
Results for systems A–F. For each of the nodule categories and for all nodules, sensitivity is provided at seven levels of average numbers of false positives per scan, 2�3,. . .,+3. In the
final column, the average of the sensitivities at the seven false positive levels is given. The number in the bottom-right of each table can be considered an overall score for the
system.

FPs/scan 1/8 1/4 1/2 1 2 4 8 Average

System A
Small nodules 0.154 0.171 0.231 0.282 0.299 0.316 0.316 0.253
Large nodules 0.111 0.122 0.144 0.178 0.178 0.189 0.189 0.159
Isolated nodules 0.238 0.262 0.310 0.381 0.381 0.381 0.381 0.333
Vascular nodules 0.116 0.140 0.186 0.209 0.221 0.244 0.244 0.194
Pleural nodules 0.051 0.051 0.068 0.119 0.136 0.153 0.153 0.104
Peri-fissural nodules 0.171 0.171 0.286 0.314 0.314 0.314 0.314 0.269
All nodules 0.135 0.150 0.193 0.237 0.246 0.261 0.261 0.212

System B
Small nodules 0.111 0.171 0.222 0.299 0.453 0.538 0.581 0.339
Large nodules 0.111 0.122 0.144 0.222 0.278 0.344 0.367 0.227
Isolated nodules 0.214 0.262 0.310 0.476 0.595 0.667 0.667 0.456
Vascular nodules 0.105 0.116 0.163 0.198 0.267 0.337 0.360 0.221
Pleural nodules 0.017 0.017 0.017 0.085 0.220 0.339 0.390 0.155
Peri-fissural nodules 0.171 0.314 0.371 0.457 0.600 0.686 0.743 0.478
All nodules 0.111 0.150 0.188 0.266 0.377 0.454 0.488 0.291

System C
Small nodules 0.009 0.017 0.077 0.205 0.342 0.530 0.624 0.258
Large nodules 0.089 0.111 0.222 0.267 0.322 0.356 0.378 0.249
Isolated nodules 0.024 0.048 0.119 0.333 0.476 0.595 0.667 0.323
Vascular nodules 0.070 0.093 0.151 0.198 0.302 0.442 0.488 0.249
Pleural nodules 0.034 0.034 0.153 0.203 0.220 0.356 0.441 0.206
Peri-fissural nodules 0.057 0.057 0.171 0.286 0.457 0.514 0.571 0.302
All nodules 0.043 0.058 0.140 0.232 0.333 0.454 0.517 0.254

System D
Small nodules 0.107 0.205 0.299 0.393 0.462 0.564 0.624 0.379
Large nodules 0.017 0.022 0.089 0.144 0.222 0.333 0.444 0.182
Isolated nodules 0.149 0.214 0.405 0.571 0.571 0.667 0.690 0.467
Vascular nodules 0.055 0.116 0.198 0.256 0.372 0.453 0.547 0.285
Pleural nodules 0.013 0.034 0.068 0.153 0.220 0.356 0.475 0.188
Peri-fissural nodules 0.089 0.171 0.229 0.257 0.286 0.429 0.514 0.282
All nodules 0.068 0.126 0.208 0.285 0.357 0.464 0.546 0.293

System E
Small nodules 0.470 0.491 0.573 0.658 0.711 0.761 0.778 0.634
Large nodules 0.423 0.483 0.567 0.611 0.714 0.778 0.822 0.628
Isolated nodules 0.548 0.595 0.595 0.619 0.619 0.643 0.643 0.609
Vascular nodules 0.570 0.573 0.616 0.686 0.757 0.802 0.849 0.693
Pleural nodules 0.052 0.140 0.322 0.475 0.630 0.695 0.729 0.435
Peri-fissural nodules 0.629 0.643 0.743 0.771 0.804 0.886 0.886 0.766
All nodules 0.450 0.488 0.570 0.638 0.712 0.768 0.797 0.632

System F
Small nodules 0.019 0.038 0.075 0.133 0.186 0.278 0.359 0.155
Large nodules 0.053 0.106 0.195 0.306 0.395 0.539 0.711 0.329
Isolated nodules 0.044 0.088 0.152 0.222 0.260 0.381 0.429 0.225
Vascular nodules 0.038 0.077 0.145 0.246 0.334 0.437 0.558 0.262
Pleural nodules 0.012 0.025 0.057 0.112 0.136 0.229 0.424 0.142
Peri-fissural nodules 0.032 0.063 0.155 0.295 0.418 0.543 0.571 0.297
All nodules 0.034 0.067 0.127 0.208 0.276 0.392 0.512 0.231
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nodules reveal more subtle differences between the systems. For
example, system F scores much better for larger nodules compared
to smaller ones, but for other systems the opposite holds. In gen-
eral, isolated nodules seem easier to detect than peri-fissural and
vascular nodules, and pleural nodules are the hardest. But for some
systems this general trend does not hold.

Table 3 shows the results for all 57 possible combinations that
can be made from six systems. It is evident that blending the out-
put of CAD systems can lead to spectacular improvements in per-
formance. The combination of systems B and C, with individual
scores of 0.291 and 0.254, leads to a system with a score of
0.437, an increase of 0.146 compared to B alone. An even larger
improvement is obtained when systems C and D are combined.
This leads to a system with a score of 0.471 and the results of this
system are also given in Table 2 where it can be seen that for some
categories of nodules performance almost doubles. Combining the
best performing system (E) with one other system mostly leads to
smaller improvements, and even some slight deteriorations. But, in
the case of combining E with C, performance improves to from
0.632 to 0.659, the best combination of two systems. Combining
E with D scores lower, although D scores higher than C. When all
systems are combined an overall score of 0.685 is obtained, com-
pared to 0.632 for system E alone. The best combination without
system E is the combination of all remaining systems. This system
is also tabulated in Table 2. It leads to the highest improvement
compared to any single system in the combination, scoring 0.592,
which is 0.299 higher than system D, the best single system in this
combination, alone.

Fig. 2 shows the FROC curves for all nodules for all systems,
including three combinations. Fig. 3 shows the same, but for all



Table 2
Results for three combined systems. System C + D is the best performing combinations of two systems excluding system E. System A + B + C + D + F has the largest overall
performance improvement compared to any of its composing systems. The best result is obtained for the combination of all systems (A + B + C + D + E + F). For each of the nodule
categories and for all nodules, sensitivity is provided at seven levels of average numbers of false positives per scan, 2�3,. . .,+3. In the final column, the average of the sensitivities at
the seven false positive levels is given. The number in the bottom-right of each table can be considered an overall score for the system.

FPs/scan 1/8 1/4 1/2 1 2 4 8 Average

System C + D
Small nodules 0.393 0.436 0.479 0.547 0.615 0.650 0.726 0.549
Large nodules 0.200 0.289 0.322 0.356 0.389 0.489 0.533 0.368
Isolated nodules 0.548 0.619 0.667 0.667 0.690 0.714 0.738 0.663
Vascular nodules 0.302 0.349 0.372 0.419 0.465 0.535 0.616 0.437
Pleural nodules 0.153 0.203 0.288 0.407 0.508 0.576 0.661 0.400
Peri-fissural nodules 0.314 0.457 0.457 0.514 0.543 0.629 0.629 0.506
All nodules 0.309 0.372 0.411 0.464 0.517 0.580 0.643 0.471

System A + B + C + D + F
Small nodules 0.453 0.513 0.598 0.650 0.702 0.795 0.821 0.647
Large nodules 0.344 0.389 0.456 0.511 0.556 0.656 0.722 0.519
Isolated nodules 0.619 0.619 0.738 0.738 0.742 0.762 0.786 0.715
Vascular nodules 0.360 0.419 0.477 0.512 0.593 0.709 0.779 0.550
Pleural nodules 0.254 0.271 0.407 0.525 0.542 0.695 0.763 0.494
Peri-fissural nodules 0.514 0.657 0.657 0.686 0.771 0.829 0.829 0.706
All nodules 0.406 0.459 0.536 0.589 0.638 0.734 0.778 0.592

System A + B + C + D + E + F
Small nodules 0.496 0.573 0.684 0.761 0.803 0.821 0.872 0.716
Large nodules 0.389 0.411 0.578 0.678 0.778 0.811 0.867 0.644
Isolated nodules 0.595 0.619 0.643 0.738 0.786 0.810 0.810 0.714
Vascular nodules 0.430 0.465 0.616 0.721 0.802 0.826 0.907 0.681
Pleural nodules 0.254 0.356 0.542 0.627 0.695 0.746 0.831 0.579
Peri-fissural nodules 0.629 0.657 0.771 0.829 0.886 0.914 0.914 0.800
All nodules 0.449 0.502 0.638 0.725 0.792 0.816 0.870 0.685
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nodule categories separately. Note that the false positive rate plot-
ted on the horizontal axis in this Figure comprises all false posi-
tives, not only false positives in the respective categories.
6. Discussion

The six systems considered in this comparison show remark-
ably different results. This supports the notion that comparisons
on the same database are important. There are three possible main
reasons for performance difference between systems: the underly-
ing algorithm or architecture of the CAD system; the training data
that is used to train the classifiers or to set the internal model
parameters of the CAD system; and the characteristics of the test
data and the protocol that was used to set the reference on the test
data. The ANODE09 data set does not supply a separate set for
training, as was done for example in Heimann et al. (2009). As a re-
sult, some of the systems included in this comparison may have
been trained with data with different characteristics and a differ-
ent protocol for determining what constitutes a relevant nodule.
It would be interesting to compare systems that use identical train-
ing data, however, this limits the possibilities for including certain
systems that are used in clinical practice or that have been used in
previously published studies in the comparison.

Clearly the training data that has been used by the systems var-
ies considerably. In particular, system E has a distinct advantage
over the other studies in that it has used a large training set, orig-
inating from the same lung cancer trial, using the same scanners
and scan protocol. This system was trained with the NELSON anno-
tations, which are comparable, but slightly different from the
annotation protocol adopted for ANODE09. It is unclear how much
of its better performance can be attributed to the difference in
training data. The performance of system E reported here is
roughly comparable to that reported in Murphy et al. (2007), Mur-
phy et al. (2009). Method A and B both used the five example cases
in the ANODE09 date set for training. Clearly this is a small training
set, although it is representative of the ANODE09 test data. Meth-
ods C and D used the same training data, originating from an Italian
lung cancer screening trial. This training set was also small com-
pared to the set used by system E. The results obtained by systems
C and D on their training data, tested by cross-validation are sub-
stantially better than those obtained on the ANODE09 data set.
This indicates that there may be important differences between
the Italian data and the ANODE09 data, which can be related to
the scans or to the type of annotations. The Japanese team (method
A) has investigated the effect of changing training databases when
using the five ANODE09 example cases for testing and found sub-
stantial differences depending on which training database was
used. It is likely that all methods A–D would improve if they would
have more training data available. It is therefore impressive that
the combination of all systems except E approaches the score of
E so closely. LIDC has announced that a database with over 1000
CT scans will become publicly available, and this will greatly facil-
itate investigations into the effect of type and size of training dat-
abases on nodule detection performance.

The categorization of relevant and irrelevant nodule findings is
also specific to the ANODE09 study. This categorization is not uni-
versal and it is perhaps unfair to compare systems trained with
data in which other definitions of what constitutes an actionable
nodule were adopted. It is important in studies like these to care-
fully consider the definition of ‘truth’. The study of Armato et al.
(2009) shows that even experienced thoracic radiologists may
not perform well when measured against the ‘truth’ established
by other experienced thoracic radiologists.

The commercial system, F, does not achieve a very high score. It
is at a disadvantage compared to all other systems because the ac-
tual degree of suspicion used internally in the algorithm was not
accessible to the researchers who applied the system to the AN-
ODE09 data. The strategy used to construct intermediate points
(see Section 4.6) is not optimal, and the shape of the FROC curve
suggests that as well. On the other hand, it is unlikely that knowing
the proper p values for the findings of this system would have re-
sulted in much increased detection rates at lower false positive lev-
els. System F, and system E and A as well, might have achieved
slightly higher scores if more findings had been included in their
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Fig. 2. FROC curves of all six systems and three combinations. The horizontal axis is
logarithmic and covers four orders of magnitude.

Table 3
Results of all combinations that can be obtained from six systems. The filled and open
squares indicate which systems have and have not been included in the combination,
so for example h jjhhj is the combination of systems B, C, and F. The score is the
average sensitivity at the seven false positive levels 2�3,. . .,+3. The best score of any
single system included in the combination is also given, and the difference between
the combination score and the best score of a single system in the combination is
listed under D.

Combination Score Best single D

jhhhhh 0.212
hjhhhh 0.291
hhjhhh 0.254
hhhjhh 0.293
hhhhjh 0.632
hhhhhj 0.231
jjhhhh 0.371 0.291 0.080
jhjhhh 0.336 0.254 0.082
jhhjhh 0.372 0.293 0.079
jhhhjh 0.606 0.632 �0.026
jhhhhj 0.330 0.231 0.099
hjjhhh 0.437 0.291 0.146
hjhjhh 0.468 0.293 0.175
hjhhjh 0.604 0.632 �0.028
hjhhhj 0.413 0.291 0.122
hhjjhh 0.471 0.293 0.178
hhjhjh 0.659 0.632 0.027
hhjhhj 0.361 0.254 0.107
hhhjjh 0.636 0.632 0.004
hhhjhj 0.445 0.293 0.152
hhhhjj 0.634 0.632 0.002
jjjhhh 0.471 0.291 0.180
jjhjhh 0.498 0.293 0.205
jjhhjh 0.607 0.632 �0.025
jjhhhj 0.451 0.291 0.160
jhjjhh 0.477 0.293 0.184
jhjhjh 0.649 0.632 0.017
jhjhhj 0.418 0.254 0.164
jhhjjh 0.625 0.632 �0.007
jhhjhj 0.452 0.293 0.159
jhhhjj 0.640 0.632 0.008
hjjjhh 0.522 0.293 0.229
hjjhjh 0.625 0.632 �0.007
hjjhhj 0.494 0.291 0.203
hjhjjh 0.637 0.632 0.005
hjhjhj 0.560 0.293 0.267
hjhhjj 0.641 0.632 0.009
hhjjjh 0.668 0.632 0.036
hhjjhj 0.526 0.293 0.233
hhjhjj 0.678 0.632 0.046
hhhjjj 0.668 0.632 0.036
jjjjhh 0.546 0.293 0.253
jjjhjh 0.640 0.632 0.008
jjjhhj 0.518 0.291 0.227
jjhjjh 0.636 0.632 0.004
jjhjhj 0.568 0.293 0.275
jjhhjj 0.651 0.632 0.019
jhjjjh 0.664 0.632 0.032
jhjjhj 0.528 0.293 0.235
jhjhjj 0.687 0.632 0.055
jhhjjj 0.663 0.632 0.031
hjjjjh 0.659 0.632 0.027
hjjjhj 0.585 0.293 0.292
hjjhjj 0.664 0.632 0.032
hjhjjj 0.666 0.632 0.034
hhjjjj 0.689 0.632 0.057
jjjjjh 0.668 0.632 0.036
jjjjhj 0.592 0.293 0.299
jjjhjj 0.672 0.632 0.040
jjhjjj 0.677 0.632 0.045
jhjjjj 0.702 0.632 0.070
hjjjjj 0.690 0.632 0.058
jjjjjj 0.685 0.632 0.053
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result set so that the point of eight false positive detections per
scan had been reached.

System F is peculiar in that it detects larger nodules much bet-
ter than smaller ones, whereas for the other systems this is the
other way around, with C and E showing comparable performance
for large and small nodules. Intuitively, one would expect better
performance for large nodules, but one reason for better perfor-
mance for smaller nodules could be that these are more often iso-
lated. Also smaller nodules are more common so probably occur
more in CAD systems’ training data, and smaller nodules are more
likely to have the classical appearance of a simple sphere, whereas
larger nodules are more likely to be lobulated or spiculated. It
could also be a pre-determined setting of system F to give smaller
potential nodules a lower degree of suspicion. From a clinical point
of view, this makes sense as larger nodules are much more likely to
represent malignancies.

The results for the different categories of nodules reveal inter-
esting information. Some systems are particularly suited to detect-
ing isolated nodules (systems D and B, for example) which could be
the result of a high prevalence of these type of nodules in their
training data. Some systems are not very adept at detecting peri-
fissural or pleural nodules. Such weaknesses of systems to handle
particular types of nodules can be compensated by other systems
when combining them.

We believe that much more than identifying ‘good’ and ‘bad’
systems, the real value of this study lies in the demonstration that
the combination of systems yields such spectacular improvements.
As we noted, the methods have different strengths and weak-
nesses. The effect of combining systems reveals how complemen-
tary they are. System F is not a very good system in terms of
overall performance, and adding it to system E, the best performing
system, leads only to minor improvements (0.632–0.634), but
when putting all systems together, leaving out system F decreases
performance from 0.685 to 0.668. Apparently system F is in some
ways different from the other systems. Note that this complemen-
tarity is not observed for systems A and B. Leaving them out of the
total combination even slightly improves results. However, leaving
both systems out decreases performance slightly.

One general explanation for the improvements gained by many
combinations listed in Table 3 is that CAD systems contain many
elements, and therefore the designer of a CAD system faces many
choices and a combinatorial explosion of possibilities. There is a
wide array of possible features to compute for lesion candidates.
Moreover, the widely different maximum sensitivity levels reached
by the various systems suggest that the cadidates detectors of the
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Fig. 3. FROC curves of all six systems and three combinations for each of the nodule categories (small, large, isolated, vascular, pleural and peri-fissural).
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systems are quite different. Although a single system may fail to
give individual nodules a high probability, or may not even detect
them, if several methods analyze a scan very few nodules escape
detection.

More sophisticated blending strategies could be devised than
the one employed here. The technique we applied is similar to
the averaging rule in classifier combination strategies (Kittler
et al., 1998). It requires knowledge about the performance of a sys-
tem on a reference database, in the form of an FROC curve. That
curve is used in a look-up table to convert the degree of suspicion
as reported by a system, which has an arbitrary scale, to an indica-
tion of the probability that a finding with that degree of suspicion
or higher is truly a nodule in the reference database. This transfor-
mation is given by Eq. (1). The requirement that an FROC curve of
each system is needed may seem a limiting factor to use this com-
bination strategy in a clinical setting. However, we believe this is
not the case. If an institution would have access to multiple CAD
systems, the only thing that would be required is to establish a ref-
erence for a test set representative for that clinic. After running the
CAD systems on that test set, which is a useful exercise to get a
feeling for the performance of the CAD systems anyway, they can
be readily combined using Eq. (1) and the algorithm in Section 4.7.
Developing more effective ways to combine multiple CAD systems
is a promising direction for future research. It should also be noted
that the test database itself is used to measure the FROC curve of
each individual system, needed to compute the combined results.
This may have introduced statistical bias. Experiments with more
complicated cross-validation procedures to estimate the transfor-
mation in Eq. (1) showed that this effect is small.

Although the combined system performs quite well, it is impor-
tant to analyze what could be done to further improve results. Two
approaches are possible: focus on further reduction of false posi-
tives at the left end of the FROC curve or improve sensitivity. For
the latter it can be insightful to inspect the missed nodules at the
right end of the FROC curve. We visually inspected nodules that
were missed or only detected at very high false positive levels
(Fig. 4, last row), and compared them with nodules that are de-
tected at very low false positive levels (Fig. 4, middle row). The
very suspicious nodules are indeed clear, prototypical examples
of nodules. The difficult nodules were somewhat less conspicuous,



Fig. 4. Examples of false positives and easy and hard to detect nodules. In every box a finding is displayed in a sagittal, coronal and axial view, 35 voxels (approximately
25 mm) around the center point using a lung window (center �600 HU, width 1600 HU). The top row shows false positives with a high degree of suspicion in the combined
system A + B + C + D + E + F: (a) is a point where multiple vessels meet as is especially apparent from the sagittal view; (b) is an apparent protrusion caused by bony structures
close to the lung pleura; (c) is an apical scar. Many of these scars were listed as irrelevant findings, but this one is not very nodular in appearance and was not marked. The last
two rows show actual nodules that were either very suspicious, and thus easy to detect (d–f) or very hard to detect (g–i).
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Fig. 5. FROC curves of all six systems for the detection of irrelevant findings. In this
analysis the relevant findings are ignored (relevant and irrelevant findings have
been switched) and therefore false positive levels are directly comparable to those
in Fig. 2.
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but it was hard to detect any clearly identifiable characteristics
among these cases that could be used as an inspiration to improve
the performance of CAD systems.

To analyze the characteristics of the false positives, we visually
inspected the 100 most suspicious FPs of the combined system.
Although the variation among those findings was large, some
broad categories could be discerned. It appeared that vessel
branchings were the most common cause for false positives. This
is in agreement with observations in Gori et al. (2007), Lee et al.
(2005), Das et al. (2006) regarding the false positives produced
by other commercial systems not included in this study. Interest-
ingly, there were quite a few findings where two or more vessels
seemed to be in contact with each other, forming a point that
looked nodular to anyone not tracing the vessel tree through sev-
eral sections. Fig. 4a shows an example. Especially on the sagittal
view it is clear that multiple vessels meet at the location of the per-
ceived nodule. An accurate dedicated vessel segmentation algo-
rithm might be employed to reduce the occurrence of such false
positives. Methods B and C include vessel segmentation and this
may be one reason why they work well in combination with other
methods.

Another common source of false positives are apparent protru-
sions mimicking pleural nodules at locations where high density
bony structures, such as ribs, vertebrae and the sternum are close
to the pleural surface of the lung or even pressing against it. An
example is given in Fig. 4b. Using the output of a separate segmen-
tation of the bony anatomy might prevent such false positives. An-
other common source of false positives are other lesions such as
small scars.

Many false positives are small and this indicates that systems
could eliminate them by adding an algorithm that segments the
findings and discards findings that are below 4 mm, or gives them
a lower degree of suspicion. It is likely that some systems were not
designed to discard such small findings. This is suggested by the
curves in Fig. 5 where the results of all systems are given if the rel-
evant and irrelevant findings are swapped in the reference stan-
dard. Most irrelevant findings are nodules smaller than 4 mm in
diameter, and Fig. 5 shows that some methods still detect quite a
few of these very small nodules while others do not. At 1 FP per
scan, all systems are more sensitive for the detection of relevant
findings than for the detection of irrelevant ones.
The ANODE09 study is the first to compare and combine a large
group of CAD systems for nodule detection on a single database,
but the study also has some limitations. Most importantly, all data
originates from a single hospital where all scans have been ac-
quired with scanners from one manufacturer, with a single acqui-
sition protocol. Moreover all scans are from subjects from a
particular screening population. In clinical practice, CAD systems
should be capable of operating with diverse input data. Also the
reading protocol and characteristics of findings are particular to
this study and this influences the reported results. For example, a
hypothetical system that has been particularly designed to not dis-
play any markers on nodules under 5 mm diameter is clearly at a
disadvantage, although it should obtain good results for the large
nodule category. Fotin et al. (2008) proposed a different evaluation
strategy where the implicit inaccuracy for measuring the size of
smaller lesions is taken into account in the evaluation strategy.
This has not been done in the current work.
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There are few large lesions in this data set and one could argue
that those are actually the most important for a CAD system to de-
tect as they are most likely to represent cancer. This would be
especially true if CAD were used as a first reader or as a pre-screen-
ing system where it would select cases or locations to be inspected
by radiologists. On the other hand, this is currently not the usual
mode of operation for a CAD system and some radiologists actually
prefer that CAD finds especially small and subtle nodules. They do
not mind if some large and obvious nodules are missed, because
they are able to find these themselves. How small and subtle those
cases that CAD should detect should be will likely vary across
users. Different users have different preferences. In this study,
the discussion of which nodules a CAD system should detect is
somewhat circumvented by the introduction of the category of
irrelevant findings. In the future it would be interesting to repeat
the study on a larger data set, containing more variety in nodules,
and with data originating from multiple hospitals, different popu-
lations, multiple scanner types from different vendors and a rea-
sonable variety of scanning protocols.

In this study we have not addressed the question of whether the
output of the CAD system is actually beneficial for human experts.
This has been researched extensively in clinical studies, and may
be investigated in the future for the ANODE09 set.

Finally, only a small number of published and commercially
available systems have been applied to the ANODE09 data set as
of yet. We hope that in the future other groups will upload the re-
sults of their algorithms to help the research community in the
identification of open challenges regarding this important CAD
application.
7. Conclusions

A publicly available database and web-based framework for the
evaluation of CAD algorithms for nodule detection in thoracic CT
scans has been presented. The results of six algorithms are com-
pared and combined. The introduction of irrelevant findings en-
sures that false positives of the algorithms are true errors and
not nodules that do not meet the particular requirements of the
study. A simple but effective method for the combination of vari-
ous systems has been proposed. This combination method requires
knowledge about the performance of the systems to be combined,
in the form of an FROC curve on a data set with a known number of
positive findings. Combining the findings of different systems ap-
pears to be a very powerful method to improve the performance
of CAD systems. The combination of six CAD algorithms is able to
detect 80% of all nodules at the expense of only two false positive
detections per scan and 65% of all nodules with only 0.5 false pos-
itives. This suggests that blending detection algorithms is a prom-
ising direction for future research in CAD.
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