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ABSTRACT: This paper describes a new approach to
automatically find out the location of a target solid organ in 3D
CT scans. Specifically, our goal is to detect a 3D rectangle for the
target organ in a way that this rectangle bounds the organ region
tightly and accurately. The proposed approach combines the
ensemble learning and the majority voting techniques to achieve
a robust detection by using a small number of CT scans for
training. A database including 3,329 torso CT scans is used in
experiments. Among them, we manually label the heart and the
left/right kidneys from nearly 100 3D CT scans as training
samples, and use the proposed approach to localize those organs
in the other CT scans. Experimental results show that detection
rates are 99% for the heart, 85%-87% for the right and left
kidney, with a computation time less than 15 seconds per CT
scan on a general PC.

KEYWORDS: CT images, solid organ localization, ensemble
learning, majority voting.

L.

CT imaging has been widely used in the clinical
medicine to support diagnosis, surgery and therapy. Effective
image analysis algorithms and software tools can
substantially help doctors to increase efficiency and accuracy,
reduce tedium and oversights during the CT image
interpretations. Accurately and efficiently detecting the
location of an object of interest (an organ, a lesion, etc) plays
an important role in the automated CT image analysis. The
detected object location is usually in the form of a closed
surface that bounds the object of interest. If we require the
closed surface to be exactly aligned with the object boundary,
the problem of object location detection is reduced to the
challenging problem of image segmentation. In this paper,
we focus on the object location detection by finding the 3D
minimum bounding rectangle (with six faces parallel to the
X-y, y-z, and z-x planes respectively) that tightly covers the
object of interest. Such a 3D rectangle not only describes
certain geometry properties of the object of interest, but also
reduces the search space and difficulty for further image
segmentation.

Ensemble learning, such as AdaBoosting, has been
successfully used for solving object detection problems in
many computer-vision applications [1,2]. It has also been
used for 3D CT image analysis, including heart structure
recognition [3], liver segmentation [4], and anatomical
landmark detection [S]. Recently, decision forests have been
used successfully for detecting the inner organs in CT
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images [6]. All of those works reported good performance
and demonstrated potentials of using ensemble learning for
organ segmentation and localization in CT images. However,
classical ensemble learning requires a large number of
samples for training and testing. Especially, 3D CT images
have a high feature dimension and we need a large number
of training images to avoid the over-learning problem. In
practice, it is difficult to collect a number of labeled 3D CT
scans for satisfying this requirement. For example, as far as
we know, no previous works reported performances on more
than 1,000 CT scans.

In this paper, we propose a new approach to detect inner
organ locations in 3D CT images based on ensemble-
learning with a majority voting method. This approach is
aimed to solve the different solid organ detection problems
generally and can handle different kinds of real clinical CT
images, including non-contrast and contrast-enhanced,
normal and abnormal cases. Our purpose is to achieve robust
and automatic organ localization by using only a small
number (about 100) of CT scans for training.

II.

The process flow of the proposed approach is shown in
Figure 1. In this paper, we handle the location detection of
different inner organs separately and independently. Our
method is to treat 3D organ localization in a 3D CT volume
as detecting several independent 2D objects in a series of
2D image slices. Obviously, this solution can reduce the
feature dimension (3D to 2D) and increase the number of
training samples (one 3D training sample consists of a large
number of 2D training samples) during the ensemble
learning. This can increase the detection robustness
according to Occam's razor. For an unseen 3D CT scan, our
method applies different 2D detectors to each voxel
independently to detect a number of 2D candidates of a
target and votes those 2D candidates back to the 3D space.
Finally, we judge the existence of the target by checking the
mutual consent of the responses from all 2D detectors;
selecting the majority of the related 2D candidates in the 3D
voting space as the target location.

A.  Overview

The location of an inner organ is defined by a ground-
truth 3D minimum bounding rectangle (MBR) that covers
all the voxels in the target organ region, where the MBR is
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Figure 1.

aligned with the x, y and z-axes, i.e., its six faces are parallel
to x-y, y-z and z-x planes respectively. The 3D MBR of an
organ can be uniquely described by two corners
Pmm:(xmm:ymm:zmm)l and Pmax:(xmax’ymax;zmax)t' The
XmaxsY maxsZmao XminsYmim Zmin . ar€  the  maximum and the
minimum coordinates of all the voxels in the organ region
along the sagittal, coronal and axial body directions. This
way, the problem of detecting the location of an inner organ
is reduced to a problem of finding the two MBR corners
Pmm and Pmax-

Instead of directly finding P,,, and P, for the 3D MBR,
we try to find three 2D MBRs, which are the projections of
the 3D MBR onto x-y, y-z and z-x planes, respectively. The
2D MBR R. on the x-y plane, defined by two corners
Pin=minYmin)' a0 P pe=(Xmax,Vmar)'; the 2D MBR R, on
the y-z plane, defined by two corners P*,,,,=(¥minZmn) and
P'yax=(VmaxZmay)'; and the 2D MBR R, on the z-x plane,
defined by two corners P =(ZminXm»n)  and
P yx=(ZmawXma)'. As summarized in Figure 1, we train three
2D location detectors for finding a number of candidates of
2D MBRs R,, R,, R. independently on each sagittal-,
coronal-, and axial-direction slice of a 3D CT scan. Finally,
the corners of the detected 2D bounding rectangles are back-
projected to the 3D space and voted for estimating the
underlying 3D MDR.

B.  Training 2D Detectors by Ensemble Learning

A solid organ region in a 3D CT scan is constructed by a
series of consecutive 2D slices along a given direction (x, y
or z). The appearance of an organ in each 2D slice is highly
correlated and similar to its neighbor slices. Our basic
assumption is that the appearances of a solid organ on 2D
slices along the same direction are similar and could be
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recognized by a single 2D detector. Here, we only require a
“weak” 2D detector which may have optimal balance
between the false positive (FP) and true positive rates,
enhancing both efficiency and quality. This is exactly the
strength of traditional ensemble learning approach. The later
majority voting step would further reduce FP rate and make
a correct decision.

We take the 2D slices from the 3D training CT scans
(with the manually labeled ground-truth 3D MBRs) for
training the 2D organ-location detectors. Specifically, the
slices along the sagittal, coronal, and axial directions are
used for training the detectors for finding the candidates of
2D MBRs R,, R,, R, respectively. Without loss of generality,
in the following we focus on describing the training
algorithm for finding the candidates of 2D MBR R.. We
collect the slices of the 3D training images along the axial
body direction. If a slice intersects the ground-truth 3D
MBR, we further check the 2D bounding rectangle resulting
from this intersection. If the corseted target-organ in this
slice is representative, i.e., the target-organ pixels count for
a high percentage of the area of the 2D bounding rectangle,
we crop this slice by this 2D bounding rectangle and then
take the cropped slice as a positive 2D training sample. We
randomly select a set of training slices cropped by
rectangles that has no overlap with the ground-truth MBR as
the negative 2D training samples. We then apply a cascaded
AdaBoosting algorithm, using 2D Haar-like features, to
train the 2D target-organ location detector that can be
applied to other axial-direction CT slices for finding the
candidates of 2D MBR R.. In the same way, we can train 2D
detectors for finding the candidates of 2D MBRs R, and R,
using the slices along the coronal and sagittal directions.

C. Localizing a Target Organ by Majority Voting

Given an unseen 3D CT scan, we first apply the trained
three 2D location detectors on all the slices along the three
directions respectively to find out the possible existence of a
target organ. Each location in the CT scan will be checked
three times, i.e., along axial, coronal and sagittal directions
respectively and only the locations that passed three
examinations are regarded as the candidates of the target
location. Ideally, 2D bounding rectangles detected from
different  slices  provide  consistent  values  of
Xinirs Y min Zmins Xmeo Ymaxw Zmax » from which we can derive the 3D
MBR. In practice, however, detected 2D rectangles may not
lead to consistent values Of X,V Zmin  XmavYman Zma
because of various noise and detection errors. We propose to
use a majority-voting technique to achieve an optimal
estimate of the values of X, Vi Znin XmaoVma

Z -

III. EXPERIMENT AND RESULTS

A database includes 3,329 cases of 3D volumetric CT
scans were used in this experiment. These CT scans were
collected in Gifu University Hospital by two kinds of multi-
slice CT scanners (LightSpeed Ultral6 of GE Healthcare and
Brilliance 64 of Philips Medical Systems). Each CT scan
used a common protocol (120 kV/Auto mA) and covered the



entire human torso region. Each 3D CT scan has
approximately 800-1200 axial CT slices by an isotropic
spatial resolution of approximately 0.625 mm and a density
(CT number) resolution of 12 bits. Contrast media was used
for enhancement in 272 CT scans and the other 3,057 scans
are non-contrast CT images. The age of these patients is
from 25 to 92. All of these CT images are taken for the
patients with certain real or suspicious abnormalities.
Furthermore, the left or right kidney in some cases has been
physically removed by surgery.

Heart, left and right kidneys are selected as the detection
targets for evaluating the proposed approach. The 3D MBRs
(Ppin »Pmay) of those targets in each 3D CT scan are manually
marked by the authors. 100 non-contrast 3D CT scans are
randomly selected for training. Considering that one kidney
is removed in some cases, actually, 91 3D CT scan are used
for training the left kidney detectors and 97 3D CT scans are
used for training the right kidney detectors. This leads to
700-1800 positive 2D training samples and 10,000-25,000
negative 2D training samples that are used to train the 2D
location detectors for each organ along each of the sagittal,
coronal, and axial directions. The detectors for heart, left and
right kidneys are trained separately and independently. Each
2D location detector consists of 10-15 cascades and each
stage in the cascades is a classifier by combining (boosting)
10-30 weak classifiers.

The proposed approach is applied to localize the heart,
left and right kidneys in 3,228 CT scans in the database
independently. Those CT scans are test samples and not used
for training. Accuracy of the organ localization was first
carried out by a subjective evaluation by authors (including
an anatomist and a radiologist), and then, we randomly
selected 559 CT scans from test samples for quantitative
evaluations. The ground truth 3D MBRs of each target organ

were manually labeled by authors, and the volume overlap
between the detected 3D rectangle A and ground-truth MBR
B (JSC: Jaccard similarity coefficient=4~B)/4UB) ),

Euclidean distance between the centers of these two 3D
rectangles (Dist.) are used as the evaluation measures. An
example of the detected heart, left and right kidneys in a 3D
CT scan is shown in Figure 2, the histograms of JSC and
Dist, for these target organs are shown in Figure 3. The
computing time for detecting a target location is less than 15
seconds per CT scan by using a computer equipped with an
Intel Core2Due 2.23 GHz CPU.

IV. DISCUSSION AND CONCLUSION

In this study, the detected location is considered to be
correct if the majority parts (about 70% volume) of detected
3D rectangle and the ground-truth MBR overlap with each
other. Our subjective evaluation shows that the heart
localization in 3,201(99%) cases, left kidney localization in
2,817 (87%) cases, and right kidney localization in 2,728
(85%) cases were correct. As shown in Figure 3, for the
quantitative evaluation on the randomly selected CT scans,
JSC histograms of left and right kidney are mostly
distributed from 40% to 100% and centered at 75%, and
localizations in 12% of 559 test CT scans completely fail. In
the case of heart localization, the histogram of JSC is
distributed from 40% to 90% and centered at 65%, without
any failure in 559 test CT scans (Figure 3(a)). The
histograms of Dist, for heart, left and right kidney
localizations are distributed mostly within 20 voxels as
shown in Figure 3(b). Except the failure cases, most of
kidney or heart localizations show a Dist, error that is less
than 15 voxels. Those results show that the proposed
approach can accomplish the heart center detection and
estimate its approximate extent. For kidney detections, our

Right kidney
4 Heart

§ Lefikidney

Figure 2. An example of the localization results for heart, left and right kidneys in a 3D CT scan. Three slices that pass through the detected center
position of the target organ are shown. Green box indicates the detected organ location (bounding rectangle of the heart, left and right kidney regions).
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Figure 3. Accuracy evaluations of organ localizations using a
number of test C'T scans. (a) Histogram of JSC values; (b) Histogram
of distance of center shift (Dist,).
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approach fails on 12% of the test CT scans and in the other
88% of CT scans, the performance (JSC and Dist,) of kidney
detections are actually higher than that for the heart. The
performance for left kidney is slightly better than that for the
right kidney. The failures are mainly from the non-contrast
CT images, where the kidney appearance is unclear, and
insufficiency of training samples for representing variety of
kidney appearances.

The major contribution of this paper is the use of the
ensemble learning for the 2D location detection along three
different directions, and then the integration of the 2D
detection results to estimate the desirable 3D organ location.
We only require the 2D detectors to be “weak™ detectors.
Majority voting of multiple 2D candidates from three
independent directions will combine all 2D weak detectors
into a 3D “strong™ detector. AdaBoosting algorithm based on
Haar-like features has been used for face detection with very
high accuracy. However, in the proposed approach, each
individual 2D location detector leads to very low detection
accuracy. Based on our experiments on the 559 3D C'T scans
that are not used for training, 55% and 37% (for the left and
right kidneys respectively) of the 2D rectangles detected in
the Step 2 of the algorithm described in Section [1-B are
outliers. On the other hand. 65% and 79% (for the left and
right kidneys respectively) of the ground-truth 2D MBRs are
not found by the 2D location detectors on the corresponding
slices. This is completely reasonable because. the kidney
may show inconsistent intensity and appearance in different
3D CT scans, and the contrast between kidney and the
surrounding background is usually very poor. For such organ

detection problems, our approach takes advantage of the
redundancy among the 2D detection results drawn from
different directions and applies a majority voting technique
to remove the outliers in the 2D detection results.

For the related works, Probabilistic Boosting Tree with
3D Haar-like features has been used to detect heart locations
as the pre-processing for heart structures segmentation [3].
This method was trained and tested successfully using 323
CT scans from 137 patient cases by a four-fold cross
validation. Our approach accomplished same detection task
in a lower-dimensional feature space (2D Haar-like feature).
In addition, our approach uses a smaller number of training
samples (100) and is validated by a much larger number
(3,229) of unseen CT scans. Recently, an approach based on
decision forests with long-range spatial context has been
used for organ localization [6]. This approach was trained
and tested for 9-organ localization based on 39 CT scans,
resulting in an average localization error (Dist,) of 21.32 mm
for heart, 25.42 mm for left kidney, and 44.52 mm for right
kidney. Comparing to [6]. our approach is much simpler and
only needs to use local features within extent of the target
organ. Additionally, our approach produces a smaller
localization errors (Dis) of heart. kidney localizations in
most CT scans.

In the conclusion, we proposed a simple approach that
can be used to localize the solid organ automatically in 3D
CT scans. This approach was applied to the heart, left and
right kidney detections and its efficiency and accuracy were
validated on a large number of clinical CT scans.
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