Improved Detection of Subtle Lung Nodules by Use of Chest Radiographs With Bone Suppression Imaging: Receiver Operating Characteristic Analysis With and Without Localization

Feng Li1
Takeshi Hara1,2
Junji Shiraisi1,3
Roger Engelmann1
Heber MacMahon1
Kunio Doi1

OBJECTIVE. The purpose of this article is to evaluate radiologists’ ability to detect subtle nodules by use of standard chest radiographs alone compared with bone suppression imaging used together with standard radiographs.

MATERIALS AND METHODS. The cases used in this observer study comprised radiographs of 72 patients with a subtle nodule and 79 patients without nodules taken from the Japanese Society of Radiological Technology nodule database. A new image-processing system was applied to the 151 radiographs to create corresponding bone suppression images. Two image reading sets were used with an independent test method. The first reading included half of the patients (a randomly selected subset A) showing only the standard image and the remaining half (subset B) showing the standard image plus bone suppression images. The second reading entailed the same subsets; however, subset A was accompanied by bone suppression images, whereas subset B was shown with only the standard image. The two image sets were read by three experienced radiologists, with an interval of more than 2 weeks between the sessions. Receiver operating characteristic (ROC) curves, with and without localization, were obtained to evaluate the observers’ performance.

RESULTS. The mean value of the area under the ROC curve for the three observers was significantly improved, from 0.840 with standard radiographs alone to 0.863 with additional bone suppression images (p = 0.01). The area under the localization ROC curve was also improved with bone suppression imaging.

CONCLUSION. The use of bone suppression images improved radiologists’ performance in the detection of subtle nodules on chest radiographs.

A major cause of radiologist-missed lung cancers is obscuration of a nodule by superimposed bones, such as ribs and clavicles, on standard chest radiographs [1]. Radiologists’ performance for the detection of pulmonary lung nodules, including nodular lung cancers, has been shown to be improved by the use of dual-energy subtraction chest radiographs [2–4]. However, dual-energy subtraction radiographs require specialized equipment and are associated with a potential small increase in the average radiation dose. A postprocessing bone suppression imaging algorithm can suppress the conspicuity of bones on chest radiographs to create corresponding bone suppression chest images [5, 6], and radiologists’ performance in the detection of small (< 20 mm) malignant nodules on chest radiographs by the use of bone suppression imaging was improved in a sequential observer study [7].

In the present study, we used a new image-processing system for bone suppression imaging. The purpose of this study was to evaluate radiologists’ detection of subtle nodules by use of standard chest radiographs alone compared with standard chest radiographs plus bone suppression images in an independent observer test using receiver operating characteristic (ROC) analysis, both with and without localization.

Materials and Methods

Institutional review board approval was obtained, and the requirement for informed patient consent was waived. Our study was HIPAA compliant.

Database

The database used in this study [8, 9] included 154 standard posterior-anterior chest radiographs with a lung nodule and 93 chest radiographs without a nodule that had been created by the Japanese...
potential false-positive results, such as confusing
categories 1, 4, or 5); and the existence of
contour information; nodules that had been rated
unknown ages or ages younger than 16 years;
radiographs in our observer study included
radiologists, participated in this observer study.

This radiologist, as well as two other
subtlety ratings provided by the original database
decided the exclusion criteria that were
blinded to the images included in the
observer study. The 72 patients with a lung
node included 47 patients with a malignant nodule
and 25 patients with a benign nodule. There were 29
nodules located in the left lung and 43 located in the
right lung. Among the 72 remaining nodules, eight
nodules were obscured by the heart or diaphragm
(but these were not excluded). The mean size of
these nodules was 16 mm (range, 6–30 mm).

Bone Suppression Imaging System

A new bone suppression image–processing
system (SoftView version 2.0, Riverain Medical)
that has been approved for clinical use in the United
States by the Food and Drug Administration was
applied to the 151 chest radiographs to create
corresponding bone suppression images. The
techniques used to produce bone suppression
images, which can suppress the conspicuity ofones by a software-only approach, are shown in
Figure 1. SoftView is a software approach to bone
suppression that uses image normalization, feature
eXtraction, and regression networks to predict the
bone image. Using the predicted bone image,
soft-tissue image is formed. Because SoftView is a
proprietary system, details of the method have not
been publicly disclosed. No operator controlled
adjustments are available for this system.

Observer Performance Study

An independent test method was used for the
observer study, using two image sets. The first
image set included all 151 patients, with half (a
randomly selected subset A) showing only the
standard chest radiograph, and the other half
(subset B) showing the standard chest radiograph
plus bone suppression images. The second image
set also included all 151 patients, with subset A
shown with standard chest radiograph plus bone
suppression images, and subset B shown with only
standard chest radiograph images. The numbers of
patients with and without nodules were balanced
in each subset. The order of cases within each
image set was randomized. At the first reading
session, the three experienced radiologists read the
first image set. Two weeks later, these same
radiologists read the second image set.

The radiologists indicated their confidence levels
regarding the presence of a lung nodule by clicking
with the mouse to mark a point on a confidence
bar (from 0 to 100), and they also marked the
most likely position, if they thought a nodule was
present, for each image or image pair. The chest
radiographs and bone suppression images were
displayed for interpretation on liquid crystal display
monitors (1600 x 1200 resolutions). Window level
and width could be controlled manually by the

Li et al.

Society of Radiological Technology from 14 medical
centers in Japan and the United States. These chest
radiographs had been digitized by a laser digitizer
with 2048 x 2048 matrix size (0.175-mm pixels) and
12-bit gray scale. The presence or absence of lung
nodules included in the database was confirmed
by CT examination [8]. In this database, case
information was provided by the database creators,
including patient age, sex, diagnosis (malignant or
benign), X and Y coordinates of nodule, simple
diagram of nodule location, and degree of subtlety
in visual detection of nodules, in addition to the raw
image data (2048 x 2048 matrix size; 12-bit gray
scale). The nodule subtlety was classified into five
categories—1, very subtle; 2, subtle; 3, relatively
subtle; 4, obvious; and 5, very obvious—according
to the consensus of three chest radiologists (with
10, 16, and 26 years of experience). The size of
each nodule included in the database was measured
on the chest radiographs by one of the database
creators according to the consensus of three
radiologists, and the average size of all nodules
was 17.3 mm (range, 0–60 mm). The diagnosis for
malignant nodules was determined on the basis of
histologic and cytologic examination, and that
for benign nodules was determined on the basis of
histologic examination, definitive isolation of a
pathogenic organism, shrinkage and disappearance
with the use of antibiotics, or no change observed
during a follow-up period of 2 years. To supplement
the original information provided with the database,
we obtained the contours of nodules, except for a
few nodules with unidentified contours, which had
been drawn with the consensus of a different set
of two experienced chest radiologists (both with
16 years of experience) during a previous study
[10]. Note that none of the five chest radiologists
mentioned in this paragraph were included in the
current observer study.

A radiologist (with 18 years of clinical
experience and 16 years of research experience)
who was blinded to the images included in the
database decided the exclusion criteria that were
used to choose the chest radiographs for the
current observer study on the basis of the nodule
subtlety ratings provided by the original database
creators. This radiologist, as well as two other
experienced (25 and 10 years of experience) radiologists, participated in this observer study.

The exclusion criteria for selection of chest
radiographs in our observer study included
unknown ages or ages younger than 16 years;
nodule diameter greater than 30 mm; absence of
contour information; nodules that had been rated
as either very subtle, obvious, or very obvious
(categories 1, 4, or 5); and the existence of
potential false-positive results, such as confusing
scars, very small (< 3 mm) or calcified nodules.
observers, and a magnification tool was available. No clinical parameters were provided to the observers. Observers were informed that images might or might not contain a nodule but were not informed regarding the proportion of patients with nodules. We provided a training session before the test with three patients who were not used in the study and instructed the observers how to use the confidence rating scales appropriately.

Data Analysis

The confidence level ratings from each observer for 151 patients were analyzed by use of the ROC method, and a quasi–maximum likelihood estimation of the binormal distribution was fitted to the radiologists’ confidence ratings [11]. The statistical significance of the difference in the values of the area under the ROC curve (AUC) between observer readings with chest radiographs versus chest radiographs plus bone suppression images were tested by use of the Dorfman-Berbaum-Metz method [12, 13], which included both reader variation and case sample variation by means of an analysis-of-variance approach. Localization ROC curves [14] for observers without and with the computer-aided detection scheme were also determined for each reading condition. A “proper” binormal model [15] was used for the ROC and localization ROC curves. In this study, localization was considered correct if the indicated point was located within the contour of the nodule. The sensitivity in this study was defined according to the number of nodule lesions that were correctly located by an observer, regardless of the confidence level ratings. However, the confidence level ratings for corresponding positions (nodules or false-positives) located by all three observers were all over 0.50 in this study.

Results

The mean AUC value of the ROC curves for the three observers was significantly \(p = 0.01 \) improved, from 0.840 with chest radiographs alone to 0.863 with chest radiographs plus bone suppression images, in the detection of subtle lung nodules on 151 chest radiographs without and with bone suppression imaging (Table 1; Fig. 2). The mean detection rate of the 72 subtle nodules (correct localizations) was improved, from 60% with chest radiographs alone to 64% with chest radiographs plus bone suppression images, for the three observers. However, the mean number of false-positive results (i.e., incorrect localizations) on 151 images was increased from 18 by use of chest radiographs alone to 25 by use of chest radiographs plus bone suppression images (Table 2). The area under the localization ROC curve also improved (Fig. 3).

For the 25 nodules with a subtlety rating of 2 (“subtle”), the mean AUC value of the ROC for the three observers was slightly improved (from 0.722 with chest radiographs alone to 0.758 with chest radiographs plus bone suppression images), but this improvement fell short of statistical significance \(p = 0.15 \) (Table 3; Fig. 4). Many of the subtle lung nodules were very difficult to detect on the standard chest radiographs but were relatively easy to detect on the bone suppression images (Figs. 5 and 6).

Discussion

The observers’ performance for the detection and characterization of noncalcified and calcified lung nodules can be improved by using dual-energy subtraction chest radiographs, including soft-tissue images that eliminate bone shadows and bone images that enhance calcified structures [2]. Generally, the soft-tissue image is more important than the bone image for the detection of nodular lung cancers because a major cause of failure to detect these cancers is obscuration by superimposed bones, such as ribs and clavicles. Shah et al. [1] reported that, in a case series with 40 missed cancers, 95% were partly obscured by overlying ribs, including 65% that were obscured by two or three bones and 22% that were also obscured by a clavicle. In a previous observer study [3], we showed that observers’ ability to detect cancers previously missed by radiologists was significantly improved by use of dual-energy subtraction chest radiographs. However, dual-energy subtraction radiographs require specialized equipment and also are associated with a small potential increase in average radiation dose.

TABLE 1: Area Under the Receiver Operating Characteristic Curve Values for Three Radiologists in Detecting Subtle Lung Nodules on 151 Chest Radiographs Without and With Bone Suppression Imaging

<table>
<thead>
<tr>
<th>Observer</th>
<th>Without Bone Suppression Imaging</th>
<th>With Bone Suppression Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.899</td>
<td>0.924</td>
</tr>
<tr>
<td>B</td>
<td>0.795</td>
<td>0.824</td>
</tr>
<tr>
<td>C</td>
<td>0.826</td>
<td>0.840</td>
</tr>
<tr>
<td>Mean</td>
<td>0.840</td>
<td>0.863</td>
</tr>
</tbody>
</table>

Note—The difference in the area under the curve values without and with the bone suppression imaging was statistically significant \(p = 0.01 \) for three radiologists combined.
Image-processing techniques for suppressing skeletal structures on standard chest radiographs have been reported recently [5, 6]. Postprocessing bone suppression imaging algorithms can suppress the conspicuity of bones, thereby creating an appearance similar to that of a dual-energy soft-tissue image. On bone suppression images, the conspicuity of both normal soft-tissue structures and abnormal lesions, such as noncalcified lung nodules, can be enhanced.

Oda et al. [7] reported that rib suppression with processed chest images by using a massive training artificial neural network technique developed by Suzuki et al. [6] significantly improved the detection of lung nodules (AUC values improved from 0.816 to 0.843). In our observer study, we applied a new bone suppression image-processing system to the chest radiographs to create corresponding bone suppression images. Our results showed that the radiologists' performance for the detection of subtle nodules was also significantly improved (AUC values improved from 0.840 to 0.863) by using chest radiographs together with bone suppression images compared with using standard chest radiographs alone.

The same published lung nodule database [8, 9] was used by Oda et al. [7] and in the present study. The differences between the two studies include the larger number of cases used, the criteria for selection of cases from the database, and the independent observer test method used. Specifically, the number of cases (72 patients with a nodule and 79 patients without a nodule) in our study was substantially larger than that in the study by Oda et al. [7], which used a total of 60 patients (randomly selected) with or without a nodule. The case selection criteria differed in that we excluded obvious nodules and very subtle nodules from our observer study. The reason for the exclusion of very subtle nodules was that these cases were usually not considered actionable on the basis of the chest radiograph [16]. The independent test method used in our study is a well established experimental design, although it requires more time than the sequential test method. Another difference in our study was the use of ROC analysis with localization. Finally, the techniques to create bone suppression images were different in the two studies.

Many factors, including the imaging technique and location and subtlety of lung nodules, might influence radiologists’ decisions in detecting lung nodules in observer tests.

| TABLE 2: Three Radiologists’ Performance for Detecting Subtle Lung Nodules on 151 Chest Radiographs Without and With Bone Suppression Imaging |
|---|---|---|
| Observer | Without Bone Suppression Imaging | With Bone Suppression Imaging |
| A | 75 | 79 |
| B | 49 | 56 |
| C | 54 | 57 |
| Mean | 60 | 64 |
| No. of false-positive results | | |
| A | 41 | 51 |
| B | 4 | 12 |
| C | 9 | 11 |
| Mean | 18 | 25 |

Note—The difference in area under the curve values without and with the bone suppression imaging was not statistically significant ($p = 0.15$ for three radiologists).

| TABLE 3: Area Under the Receiver Operating Characteristic Curve Values for Three Radiologists in Detecting Lung Nodules With Subtlety Category 2 (“Subtle”) on 104 Chest Radiographs Without and With Bone Suppression Imaging |
|---|---|---|
| Observer | Without Bone Suppression Imaging | With Bone Suppression Imaging |
| A | 0.861 | 0.863 |
| B | 0.655 | 0.703 |
| C | 0.652 | 0.708 |
| Mean | 0.722 | 0.758 |

Fig. 3—Localization receiver operating characteristic (ROC) curves for detection of subtle nodules on chest radiographs with three observers. Area under localization ROC curve was improved with use of standard chest radiographs with bone suppression imaging.
The number of false-positive results can increase when observers use image-processing or computer-aided detection systems [19, 20]. Our results showed that the mean sensitivities by three radiologists were relatively low when using both chest radiographs alone (60%) and chest radiographs plus bone suppression images (64%), probably because we only included subtle nodules. Although the mean numbers of false-positive results were slightly increased by use of chest radiographs plus bone suppression images, the more important result showed that ROC curves with localization were improved by use of chest radiographs plus bone suppression images compared with use of chest radiographs alone, in a manner similar to the general ROC curves.

A limitation of this pilot study includes the use of digitized chest radiographs, because digitization is not frequently used currently for film interpretation. However, the use of bone suppression imaging also improved radiologists’ accuracy for the detection of small lung cancers on computed radiographs that were obtained from our medical center in another observer study [21]. In that study [21], our goal was to compare bone suppression imaging with dual-energy subtraction chest radiographs, so we used a different test method (sequential observer test). Also, the differences in the detection of small lung cancers by using chest radiograph alone, chest radiograph plus bone suppression imaging, and chest radiograph plus dual-energy subtraction were compared for two observer groups (experienced and less experienced) and two reading-time groups (time limited and unlimited). We think that the benefits of bone suppression imaging applied to computed radiography should be comparable or superior to those with digitized radiography, on the basis of our experience with image processing using these digital detectors, not least because computed radiography captures a greater gray-scale range.
Other limitations include the fact that this study was a preliminary test by a small observer group using selected images. A few “normal” cases with potentially confusing findings were excluded, which might lead to a reduction in the false-positive rate. Our case selection was based on the visual subtlety of nodules but not the lesion size per se, because obvious nodules do not require bone suppression imaging for detection. On the other hand, if the technique can improve diagnostic accuracy in the detection of subtle lung nodules compared with standard chest radiographs alone, this means that observer A was progressive and the other two observers were conservative for identifying lung nodules on chest radiographs. However, this result would not affect the ROC curve fittings because the fitting algorithm was not affected by the absolute value of the original rating score but depended on the order of rating scores for each case.

In summary, the results of this study suggest that the use of bone suppression images can significantly improve the detection of subtle lung nodules compared with standard chest radiographs alone.

Acknowledgments
We are grateful to Masaki Matsusako and Akira Yamada for participating as observers.

References
3. Li F, Engelmann R, Doi K, MacMahon H. Improved detection of small lung cancers with dual-energy subtraction chest radiography. AJR 2008; 190:886–891
Detection of Subtle Lung Nodules

