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The precise three-dimensional (3-D) segmentation of
cerebral vessels from magnetic resonance angiography
(MRA) images is essential for the detection of cerebro-
vascular diseases (e.g., occlusion, aneurysm). The com-
plex 3-D structure of cerebral vessels and the low
contrast of thin vessels in MRA images make precise
segmentation difficult. We present a fast, fully auto-
matic segmentation algorithm based on statistical model
analysis and improved curve evolution for extracting the
3-D cerebral vessels from a time-of-flight (TOF) MRA
dataset. Cerebral vessels and other tissue (brain tissue,
CSF, and bone) in TOF MRA dataset are modeled by
Gaussian distribution and combination of Rayleigh with
several Gaussian distributions separately. The region
distribution combined with gradient information is used
in edge-strength of curve evolution as one novel mode.
This edge-strength function is able to determine the
boundary of thin vessels with low contrast around brain
tissue accurately and robustly. Moreover, a fast level set
method is developed to implement the curve evolution
to assure high efficiency of the cerebrovascular seg-
mentation. Quantitative comparisons with 10 sets of
manual segmentation results showed that the average
volume sensitivity, the average branch sensitivity, and
average mean absolute distance error are 93.6%,
95.98%, and 0.333 mm, respectively. By applying the
algorithm to 200 clinical datasets from three hospitals, it
is demonstrated that the proposed algorithm can provide
good quality segmentation capable of extracting a
vessel with a one-voxel diameter in less than 2 min. Its
accuracy and speed make this novel algorithm more
suitable for a clinical computer-aided diagnosis system.
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INTRODUCTION

A cerebrovascular accident (CVA) or stroke is
a medical emergency resulting from an

ischemia caused by thrombosis, stenosis, malfor-
mation, or a hemorrhage from a ruptured aneur-

ysm. It can cause permanent neurological damage,
complications, or death if not promptly diagnosed
and treated. It is the second leading cause of death
and the leading cause of adult disability in the
world1. Magnetic resonance angiography (MRA)
is a type of magnetic resonance imaging (MRI)
scan. It can provide volumetric pictures of the
vasculature inside the body in the form of
sequential cross-sectional images. To construct
volume visualizations of the cerebral blood vessels
from volumetric MRA images, the maximum
intensity projection (MIP) technique2,3 has been
widely used by many clinicians. MIP is a volume
rendering technique for 3-D data that selects the
maximum voxel value along a line from the view-
point to the plane of projection (2-D). MIP can
clearly show the overall shapes and paths of the
blood vessels and is computationally fast. However,
its 2-D projections do not provide a good sense of
depth for the volumetric data (e.g., the spatial
relationship of overlapping vessels or the region of
interest obscured by large bright structures). Three-
dimensional (3-D) information about vascular con-
nections, spatial positioning, and tubular shape
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changes are crucial for CVA diagnosis, quantitative
analysis, and postoperative monitoring.
A variety of techniques for vascular segmentation

from MRA have been proposed. These techniques
can be divided into two general categories: skeleton
based and non-skeleton based.4 The principle of
skeleton-based techniques is the segmentation and
reconstruction of vessels by first detecting the
centerlines of the vessels from cross-sectional slices.
The centerlines can be generated by vessel modeling
methods. Several methods have been developed
based on this principle.5–9 On the other hand, non-
skeleton-based techniques extract the vessels in 3-D
directly.
Non-skeleton-based segmentation techniques have

received considerable attention. Wilson et al.10,
Chung et al.11,12, El-Baz et al.13,14, and Hassouna
et al.15 proposed segmentation methods for cerebral
vessels based on statistical models using an MRA
dataset. The curve evolution theory and level set
method have been applied to images to derive object
boundaries. Yu et al.16, Farag et al.17, Yan et al.18,
Deschamps et al.19, and Manniesing et al.20 devel-
oped vessel segmentation methods based on
geometric deformable models (level sets). Masutani
et al.21 proposed the segmentation of vessel-like
structures using mathematical morphology. In addi-
tion, some hybrid methods have been presented.
Zana et al.22 combined morphology and curvature
evaluation to segment vessel-like structures. Flasque
et al.23 proposed a method for the detection,
representation, and visualization of a cerebral vascu-
lar tree using MRA images. The vascular tree is built
by iteratively tracking the vessel centerlines using
candidate voxels, which is achieved by intensity
correction, diffusion filtering, and region growing.
Passat et al.24 introduced an atlas of the whole head to
help to segment brain vessels fromMRA images using
a topology-preserving region-growing algorithm.
These existing vascular segmentation methods

have at least one of the following limitations: (1)
Gaussian distribution is generally assumed to express
the probability distribution of the tissues in MRA
images. However, this assumption is inconsistent
with the truth and results in an error between the
proposed model and the clinical data. (2) The
maximum intensity gradient, as the only criterion,
is frequently employed to determine vascular boun-
daries, but the gradient magnitudes are not suffi-
ciently high in the boundaries of thin vessels with
low contrast. (3) The regulation of parameters in

geometric deformable models is difficult or not
applicable which greatly influences the segmentation
results. (4) User interactions are required to deter-
mine the seed region, or the starting and ending
points of vessels. (5) The method is time consuming.
(6) An evaluation with a limited number of datasets
barely proves robustness of the algorithm.
Therefore, the development of a fast and fully

automatic cerebrovascular segmentation method that
uses volumetric MRA data was the prime motivation
behind our work. In this paper, we present an
algorithm for segmenting a cerebrovascular tree
from a time-of-flight (TOF) MRA dataset based on
a statistical model analysis and curve evolution
method. TOFMRA datasets was modeled by a finite
mixture of one Rayleigh and several Gaussian
distributions. Cerebral vessels distribution and other
tissue (brain tissue, cerebrospinal fluid (CSF), and
bone) distribution could be estimated using expect-
ation maximization (EM) algorithm. Then the
statistical distribution is integrated with gradient
information to form a novel edge-strength for curve
evolution. Such curve evolution method embedding
the edge information is able to determine the
boundary of vessels, particularly thin vessel, more
accurately and robustly. Moreover, the curve evolu-
tion is implemented by a fast level set so as to able to
segment the cerebrovascular structure in a short time.
A flow chart for the algorithm is shown in Figure 1.

MATERIALS

The database used consisted of 200 TOF MRA
studies from three different MRI scanners, includ-
ing 142 normal cases and 58 abnormal cases
(occlusions, unruptured aneurysm). (1) 110 of
these MRA studies were performed using a GE
Signa Series 1.5 T MRI scanner (TR=29, TE=6.9,
flip angle = 20) at the Kizawa Hospital (KH),
Japan. The volume was 256×256×80 voxels and
the voxel size 0.47×0.47×1.5 mm3. (2) 70 of these
MRA studies were obtained using a SIEMENS
Symphony 1.5 T MRI scanner (TR=44, TE=7.15,
flip angle = 20) at the Gero Hot Springs Hospital
(GHSH), Japan. Each MRA study involved 72
slice images. The axial slice images were 256×192
pixels with a voxel size of 0.70×0.70×1 mm3. (3)
The remaining 20 cases were acquired from a GE
Signa Series 1.5 T MRI scanner (TR=24, TE=6.3,
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flip angle = 20) at Gifu University Hospital
(GUH), Japan. The volume was 256×256×50
with a spatial resolution of 0.625×0.625×
1.2 mm3. All of the acquired MRA data were
subsequently converted to isotropic volume data
by using tri-linear interpolation. The size of the
converted 3-D volume data was 400×400×200
voxels, and the size of each voxel was 0.5×0.5×
0.5 mm3. We tested our new segmentation method
on the obtained isotropic volume dataset.
In addition, 10 sets of volumetric MRA images

were selected from the database at random (five sets
from KH, four sets from GHSH, one set from GUH),
two of which are abnormal (one occlusions, one
unruptured aneurysm). The cerebrovascular struc-
tures were manually segmented from these 10
datasets under the supervision of two experienced
radiologists. The manual segmentations, which were
voxel-by-voxel selections, were treated as the ground
truth to determine segmentation precision and used
for a statistical model analysis of blood vessels.

STATISTICAL MODEL ANALYSIS

In this section, we show how the statistical model
for TOF MRA was derived for the various brain
tissues inMRA images and estimate their parameters
using the fast EM algorithm (FEM) algorithm.

Statistical Model

A statistical classification-based method of
segmentation for medical images has been pro-
posed25. The basic idea behind this method is an
assumption that the intensity of a homogeneous

region (one anatomical structure) in an image
submits to a single statistical model distribution
and that the intensity distribution of all the pixels
or voxels can be approximated by a finite mixture
of statistical model distributions. A statistical
model may also be a linear combination of several
appropriate probability distribution functions based
on the physical specialty of each anatomical
structure in a specific imaging modality. It may
automatically be determined whether a voxel is an
object or background based on the statistical
probability of the voxel. This method can be
summarized as follows: (1) construct a statistical
model with a finite mixture of probability distri-
butions, (2) estimate the parameters for the
statistical model, (3) obtain the probability distri-
butions for the objects and background, respec-
tively, and (4) select global threshold values based
on the MAP classification rules.
A statistical approach-based cerebrovascular

segmentation method using MRA images was first
developed by Wilson and Noble.10 In their study,
an intensity frequency histogram of a TOF MRA
dataset had the property of an adjacent bimodal
shape in a low-intensity region and a much lower
frequency expansion over a high-intensity region.
The lowest intensity region corresponded mainly
to CSF (surrounding the brain tissue), bone, and
the background air. The next lowest intensity
region corresponded to brain tissues (both gray
matter and white matter) and parts of the eyes. The
highest intensity region consisted of subcutaneous
fat and cerebral vessels. Two Gaussian distribu-
tions were chosen to model the bimodal shape in
the lowest intensity regions respectively while a
uniform distribution was used to depict the

Volumetric MRA

Statistical model analysis of
volumetric MRA images

Improved curve evolution method

3-D cerebrovascular
structure

Initial curves (surface) of
cerebrovascular structure

Fig. 1. Flow chart for cerebrovascular segmentation of TOF MRA using statistical model and improved curve evolution.
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distribution of the vessels. El-Baz et al.14 adopted
an adaptive linear combination of a derived model
and a number of dominant and subordinate discrete
Gaussians distributions rather than a mixture of
just three pre-selected Gaussian and uniform
distributions to approximate the intensity distribu-
tion of voxels in MRA datasets. In the study by
Hassouna et al.15, one Rayleigh and two Gaussian
distributions were used to model CSF and the
brain tissue region. One Gaussian distribution
corresponded to blood vessels. However, their
statistical model for TOF MRA datasets was
inadequate for our datasets. The above methods
all rescaled the intensity values of the MRA voxels
to the range [0,255] which results in the lost of
detail information.
The intensity value of each voxel in our datasets

was a 16-bit positive integer without any rescaling,
ensuring accurate intensity information. The plots
of the normalized intensity frequency histograms,
without smoothing, of three TOF MRA datasets
randomly selected from different MRI scanners are
shown in Figure 2 (solid line). The normalized
intensity frequency histograms for these three
datasets have the same shape, two distinct peaks
with a long tail over a high-intensity region. We
need to construct a further general statistical model
suitable for TOF MRA datasets from various MRI
scanners.
For cerebrovascular segmentation, blood vessels

are the object while the background class includes
CSF, bone, the background air, brain tissue, and
parts of the eyes. The signal from blood vessels is
dependent on flow rather than chemical structure
in TOF MRA images. Blood vessels are generally
regarded as circular vessels, and the intensity
characteristics of the vessel voxels are assumed to
exhibit a laminar flow pattern for which the vessel
intensity is regarded as a uniform distribution.11

This assumption, however, neglects blood viscos-
ity, turbulence, and changes in the shape of vessels
caused by cerebrovascular disease. The intract-
ability of these factors makes it difficult to
construct a single accurate statistical model for
the intensity distribution of cerebral vessels in
MRA images. To acquire a more reasonable
statistical model for cerebral vessels, we consid-
ered the normalized intensity frequency histograms
of 10 sets of manually segmented blood vessels
from MRA in turn (see Fig. 3). The results
predicted that a Gaussian class with large variance

could be used to describe a statistical model of
cerebral vessels in TOF MRA images.
Rayleigh distribution provides a more accurate

fit than Gaussian distribution for the lowest
intensity region peak of a normalized intensity
frequency histogram (peak1).15 The peak in the
next lowest intensity region (peak2) can be

Fig. 2. The normalized intensity frequency histograms, with-
out smoothing, of three TOF MRA datasets from a KH, b GHSH,
c GUH, respectively (solid curve); and the fitting results by using
the proposed statistical model (dashed curve).
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expressed by a Gaussian distribution. The region
between the first peak and second peak in a
normalized intensity frequency histogram has an
irregular shape, making it difficult to adopt a
single probability distribution function to approx-
imate that part of the observed histogram. A linear
combination of several Gaussian distributions is
able to deal with the problem by adjusting their
mean and standard deviation.

The total probability density function for the
intensity in TOF MRA images is expressed as
follows,

p I jP;��ð Þ ¼ p0�pR I j0; �0ð Þ þ
Xn�1

k¼1

pk�pG I jk; �kð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Background distribution

þ pn�pG I jn; �nð Þ;|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
cerebral vessel distribution

ð1Þ

where PG() and PG() denote Rayleigh and Gaus-
sian distribution functions, respectively; �k is a
parameter of a class k distribution function;
�� ¼ �0; � � � ; �nð Þ denotes the parameter vector of
the mixture model; P ¼ p0; � � � ; pnð Þ is the prior
probability vector. The Rayleigh distribution with
parameter σ0 and the Gaussian distributions with
mean μk and standard deviation σk are given in
Eqs. 2 and 3

pR I j�0ð Þ ¼ I

�2
0

exp
�I2

2�2
0

� �
; ð2Þ

pG I j �k ; �kð Þð Þ ¼ 1ffiffiffiffiffi
2p

p
�k

exp
� I � �kð Þ2

�2
k

 !
: ð3Þ

Thus, Eq. 1 can be rewritten as

p I jP;��ð Þ ¼ p0
I

�2
0

exp � I2

2�2
0

� �

þ
Xn
k¼1

pk� 1ffiffiffiffiffiffiffiffiffiffi
2p�2

k

q exp � I � �kð Þ2
2�2

k

 !
:

ð4Þ

The parameters of these probability distributions
can be estimated by using an expectation max-
imization algorithm.26,27 It is well known that the
EM algorithm is sensitive to the initialization of
the parameter to be searched. Reasonable initiali-
zation of these parameters will guarantee iterations
of EM to consistently converge to a local mini-
mum that proves empirically value. An automatic
method for parameter initialization can be referred
(see Appendix). Besides, we adopted a fast EM

Fig. 3. Shows normalized intensity frequency histogram and the
fitting results of vessel region from three datasets in Figure 2.
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algorithm28 for reducing the computing time of
EM algorithm.

Statistical Model Analysis

After obtaining the parameters for a statistical
model of volumetric MRA data, we can derive the
probability distributions for cerebral vessels and
background, respectively.
According to the MAP classification, a voxel

with intensity Ii will be classified as cerebral
vessels if its posterior probability is greater than
the background posterior probability

p OjIið Þ9p BjIið Þ; ð5Þ

which can be rewritten as follows, based on Bayes
rule and Eq. 2,

p�n�pG I j ��n; ��n
� �� �

9p�0�pR I j��0
� �þ

Xn�1

k¼1

p�k�pG I j ��k ; ��k
� �� �

;

ð6Þ

where P*, μ*, and σ* are the final parameter
estimations. The above equation means that a global
threshold IT for segmenting cerebral vessels from
volumetric TOF MRA dataset can be obtained by
calculating the intersection of the intensity distribu-
tions of the vessels and background.

IMPROVED CURVE EVOLUTION

Experiments indicated that the global threshold
segmentation method was able to entirely extract
all of the main cerebrovascular structure, yet failed
to segment the thin cerebral vessels with low
contrast compared with neighboring tissues as the
intensity distributions of those parts of the cerebral
vessels were similar to those of brain tissue (gray
matter and white matter; see the region within the
circle in Fig. 4). This intensity similarity is caused
by the small vessel diameter, slow flow velocity,
and the turbulent flow in vessels.
To deal with this under-segmentation, we next

present an improved curve evolution method com-
bined with region distribution obtained by statistical
model analysis, gradient information, and spatial

information (connectivity). First, we simply intro-
duce the curve evolution and its applications in
medical image segmentation. Then, we propose a
novel evolution model based on region and edge
information. Finally, a fast level set method is
introduced to implement the curve evolution.

Curve Evolution and Its Application in Vessel
Segmentation

Curve evolution, sometimes referred to as geo-
metric curve evolution, has been applied to a wide
variety of problems such as shape smoothing,
shape recognition, and image segmentation.29–32

One application of curve evolution in image
segmentation is the well-known geometric active
contours method. Malladi et al.33 first proposed
geometric active contours, which can be expressed
by the following equation:

@C

@t
¼ gðIÞ� V0 � akð ÞN; ð7Þ

where g(I) is an edge-strength function, defined
over the image domain, indicating the likelihood
of an object boundary being present at any point in
the image domain. C is the curve, and t is a time
parameter. V0 denotes a constant velocity, α is a
positive coefficient, and K denotes the curvature of
the curve. Let N be a normal vector to the curve.
Generally, the edge-strength function is a contin-
uous function, varying between 0 and 1 over the
entire image domain. It equals or approaches the
value 0 at the object boundaries and approaches

Fig. 4. A close-up of the intensity distributions of the cerebral
vessels and background.
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the value 1 in homogeneous regions where the
image gradient is small. Thus the geometric
active contours method is a classical edge-based
segmentation model.34,35

Some region-based active contours meth-
ods36–39 and active contours models that combine
region and edge information16,40,41 have been
proposed to overcome the drawback of an edge-
based model which is sensitive to the initial curve
and noise. The curve evolution-based segmenta-
tion methods for 3-D vessels have previously been
proposed.16–20,42 Farag et al. proposed a 3-D
cerebrovascular segmentation method using stat-
istical model-based level sets from MRA. In their
method, the segmentation model was a multi-
objective minimization problem which used pun-
ishment terms (to preventing overlapping between
regions), the clustering of homogeneous regions,
and a smoothing term (shortening the length of the
evolving curve). The trade-off among these three
objectives makes the implementation of this model
difficult. Yan et al. presented a capillary action
model for extracting 3-D vessels from MRA data.

A capillary active contour for the segmentation of
thin vessels was derived. The selection of param-
eters is the big problem encountered with this the
model. Furthermore, the results show that obvious
thin vessels are not completely extracted from
MRA datasets.

Region and Edge-Based Evolution Model
for Vessel Segmentation

In Eq. 7, the sign of the velocity constant V0

determines the direction of the curve evolution.
When V0 is positive, the curve expands; when
negative, the curve contracts. Generally, the
velocity of one point on the curve to be evolved
is determined by the position of the point relative
to the object to be segmented. If the point belongs
to the object then the curve should locally extend;
if it does not, the curve should contract. We
performed this classification based on the statis-
tical analysis results from the above section. A
velocity function, rather than a velocity constant,
based on Eq. 7 can thus be defined as:

V ðIÞ ¼ Sign p�n�pG I j ��n; ��n
� �� �� p�0�pR I j��0

� ��
Xn�1

k¼1

p�k�pG I j ��k ; ��k
� �� � !

: ð8Þ

If V ðI Þ ¼ 1, the curve extends, otherwise the
curve contracts. Notice that there is always
V ðI Þj j ¼ 1. In our research, the initialization
surfaces, obtained from the main cerebral vessels
segmented on the basis of statistical analysis, need
to be inflated to the boundary of the cerebral
vessels under an external force. Thus, V ðI Þ ¼ 1 in
the initial situation.
The external force is provided by the edge-

strength function which incorporates the image
properties, and is traditionally inversely proportional
to the intensity gradient ∇I over the image domain.
Such an edge-strength function will push the evolv-
ing curve to the high-gradient regions. However,
gradient information has no meaning for low-contrast
images and/or serious noise images (especially for
medical images). Besides, a high gradient does not
necessarily indicate a relevant boundary between the
object and background. Especially for cerebral

vessels in MRA images, they are widely distributed
over the high-intensity region resulting in a hetero-
geneous intensity. There is a visible gradient
magnitude in a location with marked changes in the
flow velocity, caused by changes in the diameter of a
vessel or cerebrovascular disease.
To overcome the single-factor limitation, region

classification information is added into the edge-
strength function. In most medical images, the
segmentation threshold between different anatom-
ical structures is in a dynamic region, which makes
it impossible to use a global threshold to precisely
segment the object from the background. The
classification of pixels (voxels) outside of the
dynamic region is precisely performed using
region information. Inside of the dynamic region,
the gradient information should be applied to
distinguish the object from the background. Thus,
we let the edge-strength function contain the
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region term gR �ð Þ and the gradient term gG �ð Þ. The
dynamic region is given by IT ��; IT þ�½ �,
where IT is a global threshold, and Δ is the varying

quantity of intensity, selected based on the special
condition. The region term and the gradient term
are defined respectively as:

gRðIÞ ¼
Ii � IT þ�ð Þð Þ Imax � IT þ�ð Þð Þ= if Ii � IT þ�ð Þ
IT ��ð Þ � Iið Þ IT ��ð Þ= if Ii � IT ��ð Þ

0 otherwise

i ¼ 1; � � � ;N

8><
>:

; ð9Þ

gGðIÞ ¼ 1

1þ rÎ
�� ��p ; ð10Þ

where Ii denotes the intensity of the pixel (voxel)
i. rÎ is the gradient of the smoothed version of
the input image and p=1 or 2. The Prewitt
operator was adopted as a gradient operator in
our research. The edge-strength function is
defined as follows,

gðIÞ ¼ a�gRðIÞ þ 1� að Þ�gGðIÞ
a ¼ gRðIÞ : ð11Þ

g ðI Þ 2 0; 1½ �s. Eq. 11 indicates that the region
term predominates in the edge-strength function
when the intensity is outside of the dynamic
region; when it is not, the gradient term controls
the edge-strength function. The new edge-
strength function is still continuous over the
entire intensity domain.
Another problem which we have to face to is

how to evolve the curve along the vessel. The tip
of the evolving curve along the stretch direction
of vessel fails to further move forward due to the
smooth action of curvature resulting in under-
segmentation of thin cerebral vessel. We over-
came the limitation by changing α in Eq. 7 from a
positive constant coefficient to a positive varia-
ble. α should reduce curvature effect on smooth-
ness when the point to be evolved is located near
the centerline of vessel. Contrarily, if the point on
the curve is close to the vessel boundary, the
smooth action of curvature should be enhanced
by increasing α. Therefore, Eq. 7 can be rewritten
as

@C

@t
¼ g Ii;j;k

� �� V Ii;j;k
� �� ai;j;kk

� �
N; ð12Þ

where αi,j,k is a variable determined by vesselness
43–45.

Fast Level Set Method for Novel Evolution
Model

The curve evolution model for segmentation is
usually implemented with the aid of the level set
method46–48. Instead of explicitly representing a
curve, the curve is implicitly embedded in a
surface and all the level curves for the surface
evolve simultaneously. The curve itself is the zero
isosurface or zero level set. Level sets can develop
sharp corners, break apart, and merge together,
thus the topology changes in a curve can be
handled automatically. The shortcoming of the
level set method is that it is time consuming,
especially for complex 3-D anatomical structure
segmentation with a large volumetric size because
all of the discrete points on the curve must be
updated each time by approximating the spatial
derivatives in the motion equations. All of the
proposed cerebrovascular segmentation methods
based on curve evolution16–20 face this problem
with time consumption ranging from 10 min to
over hundreds of minutes. Nevertheless, fast
cerebrovascular segmentation from an MRA data-
set is crucial for a clinical computer-aided diag-
nosis (CAD) system. We therefore developed a
fast level set method for new evolution model to
expedite the segmentation process.
Construction of the level set function (i.e., signed

distance function) is based on the level set method.
Straightforward and intuitive level set function should
simplify updating of level set function at every point
in the image domain. Instead of adopting the standard
distance function as level set function, we used an
approximate level set function49 as follows:

� Xð Þ ¼
�1 X 2 �0

0 X 2 @�0

1 X 2 �� �0

8<
: ; ð13Þ

where X is vector point in image. Let Ω denote the
whole image domain, Ω0 denotes object region, and
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∂Ω denotes the boundary. That is, the level set
functions at points inside and outside curve/surface
are −1 and 1 separately, and the level set functions
at points on the curve equal to 0.
The curve can be propagated by updating the

level set function at a small set of points in the
neighborhood of the zero level set (curve) instead of
all the points in the image domain. Therefore, the
updating of level set function is only performed at
those grid points located in zero level set and their
neighborhood points to be propagated to at next
step (notice, not all of the neighborhood points of
grid points) which reduces the computational labor
to the dimension corresponding to the curve.
With approximate level set function, the points

on the curve to be propagated will move one grid
point along their velocity direction with one
update. If the point moves outward, the value of
level set function at it adds 1. Contrarily, the value
of level set function at the point subtracts 1 when it

contracts inward. This scheme simplifies compu-
tation of level set function, and does not require
time step and reinitialization of level set function
during the evolution, which are advantages of such
scheme over traditional level set function.
We assume that every point on the curve would

move to one of its neighborhood grid points along
the velocity direction after one or several itera-
tions. Which one first arrives at its neighborhood
point depends on its velocity. The point with the
fastest velocity on the moving curve would evolve
to its neighborhood grid point earliest in the same
time. We can therefore deduce if only one point on
the updating curve will be evolved each iteration,
the one with the fastest velocity would move to its
neighborhood grid point at the following step. To
speed up the evolution, the points with relatively
faster velocity would evolve to their neighborhood
grid points along their velocity direction each
iteration, which can be expressed as the following,

�nþ1 Ii;j;k
� �� �n Ii;j;k

� � ¼
�1 g Ii;j;k

� �
V Ii;j;k
� �� ai;j;kk

� �� r�j jG� "

0 other

1 g Ii;j;k
� �

V Ii;j;k
� �� ai;j;kk

� �� r�j j9"

8><
>:

; ð14Þ

where ε is a positive threshold value, numerical
approximat ion of V Ii;j ;k

� �� �i;j ;k�
� � � r�j j

employs Upwind Finite Difference46,47.
The curve evolution procedure stops if the

following condition is satisfied.

�nþ1 Ii;j;k
� �� �n Ii;j;k

� � ¼ 0: ð15Þ

As a summary, complete algorithm for fully
automatic cerebrovascular segmentation using sta-
tistic model and improved curve evolution is
described below.

RESULTS

The proposed 3-D vascular segmentation method,
based on a statistical model and improved curve
evolution, was applied to 200 TOF MRA datasets
from three different MRI scanners, including the 10
MRA datasets used in the manual segmentation.

Statistical Model Results

In order to compare the goodness-of-fit of the
estimating statistical model for the MRA dataset
with the normalized intensity frequency histogram,
the sum of absolute difference (SAD) was chosen
to measure the similarity between them. SAD was
defined as following:

SAD ¼
XImax

i¼0

pi � p
0
i

�� ��; ð16Þ

where Pi is probability of intensity i, p0i is
estimating probability of intensity i. Imax is
maximum value of intensity. We applied this

Step 1: Calculate the probability distribution of the cerebral
vessels and other brain tissue (background), and automatically
obtain seed region of cerebral vessels
Step 2: Reconstruct main cerebrovascular structure using the
region distribution obtained in Step 1
Step 3: Initialize the approximate level set function �0 with
surface of the main cerebrovascular structure using Eq. 13
Step 4: Compute edge-function g(Ii,j,k), velocity function V(Ii,j,k),
restriction variable αi,j,k, and curvature K for the grid points on zero
level set
Step 5: Iterate level set function based on Eq. 14
Step 6: If the stopping condition Eq. 15 is satisfied, stop;
otherwise, go to Step 4
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statistical model, Wilson and Noble’ model21, and
Hassouna’s model15 to 200 TOF MRA datasets
from three different MRI scanners. The average
SADs are listed in the Table 1. The comparison
shows that average SADs using our model are
obviously smaller than ones using other two
models, which indicates that our statistical model
is more applicable to TOF MRA from different
MRI scanners. The difference of average SAD
among the three sets of datasets is due to different
imaging protocols.
The fitting results of three TOF MRA datasets

from three different MRI scanners are shown in
Figure 2. Solid line represents normalized intensity
distribution and dotted line means fitting intensity
distribution. Both lines show similar intensity
distribution. Figure 3 especially shows the fitting
results of vessel region from three datasets in
Figure 2, in which solid line denotes the normal-
ized intensity distribution of real MRA dataset and
dashed line shows the fitting intensity distribution
based on our proposed statistical model for TOF
MRA. Because the intensity frequencies of cere-
bral vessels are far below those of the background
region, a close-up of the intensity distributions for
the cerebral vessels and background is shown in
Figure 4. With the help of the automatic parameter
initialization and FEM, parameter estimation for
the statistical model of a TOF MRA dataset takes
less than 3 s.

3-D Vascular Structure Segmentation
Results

We used three metrics to quantify the differ-
ences between our proposed automatic segmenta-
tion and the manual segmentation over 10 datasets.
For binary segmentations, one approach for

taking into account the spatial properties of
structures is a pair-wise comparison of two binary
segmentations by their relative volume overlap.
Assuming spatial registration, the segmentation

validation is analyzed voxel by voxel by using
volume sensitivity defined as the intersection of
the subject obtained by an automatic method and
the reference (ground truth) in manual segmenta-
tion divided by the reference:

VolSensitivity ¼ V ðSÞ \ V ðRÞ
V ðRÞ ; ð17Þ

where V �ð Þ denotes the set of all voxels in a
dataset, ∩ is the intersection operator. S and R
denote the subject and reference. The volume
sensitivity gives a score of 1 for perfect agreement
and 0 for complete disagreement. The volume
sensitivities of the 10 datasets are shown in
Table 2, and the average volume sensitivity over
all 10 datasets is 93.6% with a standard deviation
of 3.8%.
However, volume sensitivity has itself limitation

because small vessels will have low contribution to
it. Therefore branch sensitivity is brought forward
here. It can be expressed by the following formula:

BranchSensitivity ¼ BðSÞ \ BðRÞ
BðRÞ ; ð18Þ

where B �ð Þ denotes the number of all branches in
extracted vascular structure. ∩ is the intersection
operator. S and R denote the subject and reference,
respectively. Evaluation standard of the branch
sensitivity is same as volume sensitivity. 1 means
perfect agreement and 0 represents complete
disagreement. The branch sensitivities of the 10
datasets are also shown in Table 2. The average
branch sensitivity over all 10 datasets is 95.98%
with a standard deviation of 2.8%.
Another measure focus on distance error

between each contour pairs in the automatic and
manual segmentation. The segmentation validation
is implemented by calculating mean distance error
between two sets of true positive vessel contours
(overlapped contours).50 The comparison is per-
formed in terms of contours on the 2D axial slices.
To calculate the distance between two contours,
generation method of distance function in the level
set is employed. The vascular vessel boundaries
(contours) on each axial slice obtained by auto-
matic segmentation are regarded as zero level set.
The distance function of the manual segmentation
contour relative to zero level set is generated. The
mean absolute distance error (MADE) therefore is

Table 1. Average SAD of three statistical models for TOF MRA
datasets

Average SAD Wilson Nobel model Hassouna model Our model

KH (110 datasets) 0.015 0.019 0.011
GHSH (70 datasets) 0.022 0.020 0.017
GUH (20 datasets) 0.020 0.019 0.016
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calculated over all true positive contours in one
dataset. It is expressed as follows,

MADE ¼
PM
i¼0

f xið Þj j
M

; ð19Þ

where f(xi) is distance function of discrete point xi on
manual segmentation contours, M is total number of
discrete point on contours. The MADE are listed in
Table 2 in terms of millimeters. The average of
MADE over 10 datasets is about 0.333 mm.
For comparison, we also use the geometric

active contours method33 based on gradient infor-
mation to extract cerebrovascular structure over 10
datasets, and calculate three metrics—volume
sensitivity, branch sensitivity, and MADE. The
results are reported in Table 2 too.
From the results of Table 2, the volume and

branch sensitivity of segmentation results of the
proposed method are greater than those of geo-
metric active method based on gradient informa-
tion for every case, while the MADE of
segmentation results of the proposed method is
smaller than one of geometric active method. The
greater the sensitivity is and the smaller the MADE
is, the higher the accuracy of the segmentation is.
The results indicate that segmentation accuracy of
the proposed method is obviously higher than one
of the geometric active contours method only
based on gradient information. In addition, branch
sensitivity is obviously higher than volume sensi-
tivity, which means that segmentation error of
cerebral large vessel will greatly reduce the
volume sensitivity of segmentation.

Figure 5 shows the segmentation results related
to the region of interest (ROI) for three consec-
utive image slices, which is a piece of thin cerebral
vessel which is difficult to segment. The first row
gives three consecutive cross-sectional images, in
which the ROI is enclosed by a rectangle. The
following row corresponds to one ROI, in which
column a shows the raw images for the ROI,
column b gives the gradient images of the ROI
obtained by using the Prewitt operator, column c
shows the manual segmentations (i.e., the ground
truth), column d gives the segmentation results
using the general edge-based active contours
method, and column e shows the segmentation
results obtained by the proposed method. A
comparison between columns a and b indicate that
a high gradient does not necessarily indicate the
boundary of a heterogeneous intensity object. The
segmentation results in column d show that only
vessels with a high flow velocity can be extracted
using active contours based on general edge
information while the end of the vessel could not
be extracted. By comparing the automatic segmen-
tation results using our method with the ground
truth, it can be observed that the new segmentation
method has a strong capacity for segmenting vessels
with low contrast from a TOF MRA dataset.
We evaluated the performance of the proposed

segmentation method for 3-D cerebral structures
by means of MIP images and 3-D rendered images
of the segmented results. The 200 TOF MRA
datasets from three different MRI scanners
included 142 normal cases, 32 occlusion cases
(21 cases from KH, eight cases from GHSH, and

Table 2. Validation of segmentation results for 10 datasets

Edge-based active contours method Proposed method

VolSensitivity (%) BranchSensitivity (%) MADE (mm) VolSensitivity (%) BranchSensitivity (%) MADE (mm)

KH

#1 83.6 90.4 0.563 98.0 100.0 0.227
#2 82.3 90.4 0.416 96.2 98.1 0.164
#3 85.9 92.3 0.631 97.1 98.1 0.302
#4 81.6 88.5 0.747 95.7 96.2 0.478
#5 81.3 90.4 0.730 96.8 98.1 0.102

GHSH

#6 70.7 84.0 1.198 90.5 96.0 0.541
#7 71.6 86.0 0.813 89.3 96.0 0.435
#8 68.7 82.0 1.407 87.5 92.0 0.397
#9 77.9 90.0 0.812 88.9 92.0 0.386

GUH #10 84.5 83.3 0.665 95.8 93.3 0.293

Mean±std 78.8±5.9 87.73±3.6 0.798±0.28 93.6±3.8 95.98±2.8 0.333±0.13
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three cases from GUH), and 26 unruptured
aneurysm cases (20 cases from KH, five cases
from GHSH, and one case from GUH). An
occlusion is marked by a loss in the route of the
vessel. The occlusion cases could be more easily
observed in the 3-D rendered images of the
cerebrovascular segmentation results. The aneur-
ysm is an abnormal bulging outward of one of the

arteries in the brain. It is often difficult to directly
detect the bulging by segmented results. Accurate
cerebral vessel extraction, however, is crucial for
computer-aided diagnosis of aneurysm. The 3-D
renderings of the extracted cerebrovascular surfa-
ces could be viewed stereoscopically, which is
conducive to interpreting the spatial positions of
vessels. Figure 6 shows three groups of volume

Fig. 5. Comparison of ROI for three consecutive image slices, (a) raw images, (b) gradient images, (c) manual segmentation, (d) edge-
based active contours method, (e) proposed method results.
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visualizations for the segmented region, which are
tabulated separately in different column. Each
column is for one dataset. The MIP images of the
raw TOF MRA dataset are shown in Row a. Rows

b and c show the axial and sagittal MIP image of
the segmented cerebral vessels, respectively. Row
d is their 3-D rendered image. The discontinuity in
the cerebral vessels caused by the occlusion,

Fig. 6. Volume visualizations of the segmented region. Rows 1–3 are the KH, GHSH, and GUH datasets, respectively. a Axial MIP
images of the raw dataset, b and c axial and sagittal MIP images of the segmentation results, d 3-D rendered images of the segmentation
results. Illumination: arrow marks an abnormal broken vessel caused by occlusion.
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marked with an arrow, is easily observed. From
comparisons among rows a, b, c, and d, we find
that the segmentation results obtained by the
proposed method were able to truly and intuitively
depict the cerebrovascular structures and their
spatial positions. The location of the occlusion
can be more easily observed in the MIP images
and 3-D rendering images of the segmentation
results than in the raw MRA cross section images
or their MIP images. This would be quite useful
for the diagnosis of cerebral diseases, especially
for use with a computer-aided diagnostic system.
(3-D rendering images are acquired by using
software ITK-Snap51).
Finally, from the perspective of objective repre-

sentation of the cerebrovascular structure, the seg-
mentation results were evaluated and given one of
three grades by five different radiologists separately.
Good case: over 90% of the vessels were extracted
without obvious oversegmentation. Medium case:
over 75% of the vessels were extracted, and a small
quantity of oversegmentation was acceptable. Bad
case: only the main vessels were extracted, or there
was a large region of oversegmentation. The final
average validation results are exhibited in Table 3, in
which hospital datasets are represented separately.
The good and medium grade occupancies of differ-
ent hospitals are also given in Table 3.
The difference of good and medium grade

occupancy among MRA datasets from three MRI
scanners is due to difference of contrast between
cerebrovascular region and surrounding tissue,
influenced by imaging parameters.
The proposed method is computationally effi-

cient. For a dataset with 400×400×200 voxels, the
average time for segmenting a 3-D cerebrovascular
structure was from 1 to 2 min on a 2.8 GHz PC
with 2.0 GB RAM. 3-D vascular structure seg-
mentation using level set deformable model gen-
erally can take as little as 10 min or up to several
hours.16–20

DISCUSSION AND CONCLUSION

In this paper, we have presented a fast, fully
automatic segmentation algorithm for extracting a
3-D cerebrovascular structure from a TOF MRA
dataset. It is a hybrid method, combining statistical
model analysis with improved curve evolution. The
cerebral vessels are modeled by one Gaussian
distribution while other brain tissues are modeled
by a finite mixture of one Rayleigh and several
Gaussian distributions which are able to more
precisely fit the TOF MRA dataset obtained under
different imaging parameters. With distribution
information of cerebral vessels and background,
we presented an improved curve evolution method
therefore, which constructs a novel edge-strength
function employing the region distribution informa-
tion of cerebral vessels and background obtained by
above model analysis and gradient information
together, capable of exacting thin cerebral vessels
with similar intensity to brain tissue. Moreover, a
fast level set method was developed to speed up
implement of curve evolution.
In this work, the proposed algorithm was tested

and evaluated using 200 clinical TOF MRA
datasets from three different MRI scanners (differ-
ent imaging parameters). Quantitative validations
with ten sets of manual segmentation results
showed that it had an average volume sensitivity
of 93.6%, average branch sensitivity of 95.98%,
and an average MADE of 0.333 mm. The
comparisons of three metrics with geometric active
contours method based on gradient information
indicate that our proposed method has an obvious
advantage in cerebrovascular segmentation, espe-
cially in thin vessel segmentation. Using the
volume visualization technique, the 200 segmented
cerebrovascular structures were then separately
evaluated by five radiologists and given one of
good, medium, and bad grades. The results
indicated that the proposed method was able to
provide a good quality of segmentation, especially
for thin vessels with low contrast, and was capable
of extracting vessels with a one-voxel diameter.
The novel method was computationally efficient,
taking on average 1–2 min to segment a 400×
400×200 dataset. This makes time-critical medical
applications possible, especially for computer-
aided diagnosis.
Compared with other methods, the proposed

automatic cerebrovascular segmentation method is

Table 3. Evaluation results from the clinical point of view

Case number Good Medium Bad
Good and medium
grade occupancy (%)

KH 87 22 1 99.1
GHSH 48 19 3 95.7
GUH 9 9 2 90.0
Total 144 50 6 97.0
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far more superior in efficiency and generality for
TOF MRA, which has been proven by a large
number of clinical datasets. However, there are
some limitations to the novel automatic segmenta-
tion method for cerebrovascular structure. In the
proposed segmentation, image intensity was used
as the only information either in the statistical
analysis or in the curve evolution, resulting in
leakages at areas where the image information is
ambiguous. Hence, we conclude that image inten-
sity is limited for complex cerebrovascular struc-
ture segmentation. In addition, curve evolution
was locally determined. The information from
derivatives of the curve, such as curvature, is too
local to distinguish actual boundary from noise
which frequently causes under-segmentation, for
instance extraction failure of bulging outward. To
overcome these limitations, we will combine shape
model with the proposed curve evolution to seg-
ment tubular structures more robustly and accu-
ra t e ly nex t s t ep . The fu l ly au tomat i c
cerebrovascular segmentation method is present
for MRA of TOF mode. Further research is should
be continued indicating whether the method is
suitable for other mode MRA (e.g., phase-contrast
MRA (PC MRA), contrast-enhanced MRA (CE
MRA)), which are different in imaging signals.
In the future, we would like to obtain more

manual segmentations for each dataset from differ-
ent radiologists as the ground truth for quantitative
evaluation. For quantitative segmentation valida-
tion, the overlap measure depends on the size and
the shape complexity of the object, and is related
to the image sampling. Thus, other quantitative
evaluation methods48 should be introduced in
cerebrovascular segmentation validation. We will
apply the segmented cerebrovascular structure in
existing cerebrovascular disease CAD system.52

Finally, we plan to extend the technique to other
medical image segmentation.
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APPENDIX

Reasonable initialization of parameters will
guarantee iterations of EM to consistently con-

verge to a local minimum that proves empirically
value. An automatic method for parameter initial-
ization was developed. This initialization is based
on the character of a normalized intensity histo-
gram. The important procedure of the initialization
is to estimate the parameters of the probability
distributions corresponding to two distinct peaks
with a long tail over a high-intensity region.
Let h(I) be the normalized intensity frequency

corresponding to intensity I. The superscript 0 of
the parameters presents initial value.

(1) Peak1—Rayleigh distribution

�0
0 ¼ Ipeak1; p

0
0 ¼

h �0
0

� �
pR �0

0j�0
0

� �

σ0 is parameter of Rayleigh distribution. P0 is the
prior probability of Rayleigh distribution.

(2) Peak2—Gaussian distribution

�0
n�1 ¼ Ipeak2, �0

n�1 is calculated using the
maximum likelihood estimation (MLE) for Gaussian
distribution in the region Ipeak2 � 20; Ipeak2 þ 20

	 


of hðI Þ; p0n�1 ¼
h �0n�1ð Þ

pG �0n�1j �0n�1;p
0
n�1ð Þð Þ :

μn−1 and σn−1 are parameters of the Gaussian
distribution. Pn−1 is the prior probability of the
Gaussian distribution.

(3) Long tail—Gaussian distribution

Find intensity Ivessel that satisfies

PImax

l¼Ivessel

h Ilð Þ

PImax

l¼1

h Ilð Þ
¼ 0:03.

That is, we rudely estimate the threshold of vessels
from the last 3% of the high-intensity data of the
observed histogram.
�0
n ¼ Imax�Ivessel

2 . �0
n is calculated using the MLE 31

method for Gaussian distribution based on
parameters �0

13, Ivessel and Imax. p0n ¼ 0:03.
μn1 and σn are parameters of the Gaussian
distribution relative to cerebral vessel. Pn is the
prior probability of the Gaussian distribution.
The other Gaussian distributions equidistantly

locate in the region Ipeak1 þ 12; Ipeak2 � 12
	 


:
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