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Abstract Our motivation was to provide an automatic

tool for radiologists and orthopedic surgeons for improving

the quality of life of an aging population. We propose a

method for generating a shape model and a fully automated

segmenting scheme for the psoas major muscle in X-ray

CT images by using the shape model. Our approach con-

sists of two steps: (1) The generation of a shape model and

its application to muscle segmentation. The shape model

describes the muscle’s outer shape and has two parameters,

an outer shape parameter and a fitting parameter. The

former was determined by approximating of the outer

shape of the muscle region in training cases. The latter was

determined for each test case in the recognition process. (2)

Finally, the psoas major muscle was segmented by use of

the shape model. To evaluate the performance of the

method, we applied it to CT images for constructing the

shape models by using 20 cases as training samples; 80

cases were used for testing. The accuracy of this method

was measured by comparison of the extracted muscle

regions with regions that were identified manually by an

expert radiologist. The experimental results of the seg-

mentation of the psoas major muscle gave a mean Jaccard

similarity coefficient of 72.3%. The mean true segmenta-

tion coefficient was 76.2%. The proposed method can be
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used for the analysis of cross-sectional area and muscular

thickness in a transverse section, offering radiologists an

alternative to manual measurement for saving their time

and improving the reproducibility of segmentation.

Keywords Psoas major muscle � X-ray CT images �
Shape model � Segmentation

1 Introduction

Recognition of the skeletal muscles in the abdominal

region is very important for health care. These muscles are

classified into two categories: surface muscles and deep

muscles. Because the deep muscles cannot be examined by

touch, electronic signal processing and imaging techniques

are used for diagnosing the deep-muscle region. The psoas

major is a deep muscle that plays a major role in walking. It

is particularly important to analyze this muscle because of

the age-related hypokinesia that becomes manifest with

changes in this muscle region. For example, in Japan, there

are increasing incidences of elderly people becoming

physically handicapped after suffering a fall. Sixty-two

percent of these falls result in physical damage, of which

12% result in bone fractures and 8% in the victims

‘‘requiring constant help and care’’ [1]. Furthermore, a

decrease in muscle volume is one of the factors in falls

suffered by the elderly [2].

For maintaining the quality of life of the elderly, muscle

volume measurement as a component of health care for the

aged is a critical task [2].

Various factors influence the falls suffered by the

elderly. It is considered that elderly people fall because of

their weak lower-extremity muscles. Atrophy of the psoas

major, in particular, affects the walking and exercising

ability of elderly people, according to a reported study in

which the cross-sectional area (CSA) of the psoas major

was determined [3]. The function of this muscle can be

maintained by daily exercise. It has also been reported that

the decrease in the CSA of the psoas major is greatest in

people in their 70s and older [3]. Therefore, it is necessary

to protect this muscle from age-related damage. To do so, it

is necessary to measure this muscle region quantitatively.

The automated segmentation of the muscle by computer,

instead of manual measurement by a doctor, can relieve

doctors’ heavy workload, save diagnostic time, and

improve the reproducibility of segmentation.

It has recently become possible to obtain high-definition

CT images quickly; however, the number of images

increases to as many as a thousand slices per patient. CT

images showing skeletal muscles are of little use to doctors

because their interest lies in the internal organs that are

affected by disease. Therefore, effective use of image

information is expected for CT images of the torso, which

were obtained not for the diagnosis of muscles, but for

other purposes (e.g., a diseased organ). Because all torso

CT slices contain muscle regions, we propose an effective

use of these images. In our proposed method, our goal is to

segment and analyze the muscle region in non-contrast CT

images.

The goal of previous research in the recognition of

skeletal muscles in medical images was to develop an

anatomic database or to assist doctors in surgery. A sys-

tematic organ visualization method was proposed in the

Visible Human Project [4, 5] for CT images. This method

could be used for identifying some muscles, commencing

from the psoas major muscle, which were segmented

manually. A modeling method for muscles in the crural

area was then proposed for analysis of their motor func-

tion in MR images [6]. A recognition method for the

temporal muscle was proposed for surgical planning and

analysis of loss of the mastication function [7]. These two

methods, however, were used for MR images. It remains

a question whether they can be applied to CT images in

which the boundaries between skeletal muscle and organ

regions are unclear. In the analysis of the density histo-

gram of the CT images, the overlapping of the pixel

values of the organ region and the skeletal muscle region

makes it difficult to identify the boundaries between the

skeletal muscles and other tissues by use of a density

histogram only.

To accomplish the segmentation of the muscle, we have

been developing a computer-aided diagnosis (CAD) system

for the skeletal muscles in the torso region and have

obtained some positive results in the automated recognition

of the skeletal muscles in the chest and abdominal regions

[8–10]. However, a recognition method which considers

the anatomic shape of the muscles has not yet been

realized.

In this paper, we propose a novel method for automat-

ically segmenting the psoas major muscle by means of a

shape model with a mathematical function. We applied this

model in the muscle recognition process for test cases.

Finally, we evaluated the accuracy of the CSA and the

volume obtained by the proposed method in comparison

with the muscle region segmented manually by an anatomy

expert in terms of the Jaccard similarity coefficient (JSC)

[11] and the true segmentation coefficient (TSC) [12]. In

addition, we compared the segmentation time required for

manual, semi-automatic, and fully automatic segmentation

in terms of time reduction. We were able to show not only

that skeletal muscle recognition in a CT image was pos-

sible, an achievement that a past study considered difficult,

but also that this method could be applied to images

obtained by other imaging modalities because it is based on

anatomic information, as in MRI, for example.

6 N. Kamiya et al.



2 Materials and methods

2.1 Materials

This method was applied to one hundred data sets of X-ray

CT images that were generated by a GE scanner (Light-

Speed) with a slice interval of 0.625 mm and a voxel

spacing of 0.625 mm 9 0.625 mm. Twenty data sets were

used for training of the system by generating the shape

model, and the other 80 data sets were employed for val-

idation purposes. In our previous project [8–10], our

approach was to generate normal organ models, which we

would employ to recognize abnormal cases that did not fit

the model well. In this study, therefore, we used cases with

no illness in the psoas major muscle for generating the

shape model. The absence of illness in the psoas major

muscle was judged by a radiologist with other clinical

findings and interpretation of CT. We selected the training

cases, which were used for the model generation by using a

stratified randomization method [13] for men and women

in five age groups from the 40s to 80s. Our purpose in this

study was to validate the segmentation accuracy; therefore,

the test cases were randomly selected from the normal

cases and consisted of 42 males (43–83 years old; mean,

65.5; median, 71) and 38 females (46–80 years old; mean,

60.7; median, 58). This study was approved by our insti-

tutional review board (IRB).

2.2 Overview of the method

An overview of our proposed method is shown in Fig. 1a.

The original CT images become the input images. The

segmented skeletal images generated from the original CT

images also become input images. These segmented skel-

etal images are generated by a method based on skeletal

connectivity [8]. First, the approximate skeletal region is

segmented by means of density-based methods such as

gray-level thresholding. Next, each precise skeletal region

is recognized sequentially on the basis of implicit anatomic

knowledge of its pattern of connection, shape, and spatial

relationships. The key steps in our proposed method are:

(a) generation of CT images, (b) shape model generation

for the psoas major muscle, (c) application of the shape

model in the recognition process, and (d) automatic

extraction of the region of the psoas major muscle.

Our proposed model is based on the definition of ana-

tomic location, direction, and shape. In the model-gener-

ating process (Fig. 1b), the anatomic shapes of the muscle

models are simplified by use of five approximate functions.

The muscle recognition (Fig. 1c) makes it possible to find

the best region of muscle in the segmentation process

(Fig. 1d) using the shape model (Fig. 1b) that is provided

by the input volume (Fig. 1a), referred to as vol. The

region of the muscle is determined by three parameters,

i.e., p, h, and s, which correspond to the location, orien-

tation, and shape features, respectively, of the muscles. By

use of a conditional probability Pr(p, h, s | vol), the pro-

posed method can be formulated as

ðp̂; ĥ; ŝÞ ¼ arg max
p;h;s

Pr p; h; s j volð Þ: ð1Þ

Solving Eq. 1 involves estimation of the three parameters,

p, h, and s, which are defined individually in 3D space.

As a result, the determination of these parameters requires

computation in 9D space, which is too expensive for practical

purposes. In our approach, therefore, the 9D parameter space

is decomposed into three marginal spaces as follows:

Pr p; h; s j volð Þ ¼ Pr p j volð Þ Pr h j p; volð Þ Pr s j h; p; volð Þ:
ð2Þ

The solution to the Pr(p | vol), Pr(h | p, vol), and Pr(s | h,

p, vol) in Eq. 2 is described in Sects. 2.4.1, 2.4.2, and 2.4.3,

respectively. First, the spatial location of the muscle is

determined by the term Pr(p | vol). The anatomic feature

point p represents a set of landmarks (LMs) which are

determined from the segmented skeletal images. Next, the

muscle orientation is defined by the term Pr(h | p, vol),

where the muscle direction h is determined based on the

anatomic centerline connecting the two LMs, corresponding

to the origin and the insertion of the muscle. Pr(p | vol) and

Pr(h | p, vol) become 1 if the LMs are accurately set based

on the anatomic definition; otherwise, they are zero. Finally,

the shape feature s is determined following the model-

building process. The shape feature s consists of two sub-

parameters, a and b; the shape parameter a is determined by

use of the training database, and the fitting parameter b is

determined dynamically for a test case in the recognition

process. Finally, the muscle region (i.e., Pr(s | h, p, vol), see

Eq. 2) is determined.

The shape model-building process (manually inputting

p and h, and also determining the shape parameter a) and

the recognition process that uses this shape model (the

completely automatic determination of p and h and the

fitting parameter b) are addressed in detail in the following

sections.

Fig. 1 Flowchart of our

proposed method for

recognizing the psoas major

based on a model-building

approach

Automated segmentation of psoas major muscle in X-ray CT images 7



The validity of the shape model was evaluated by the

segmentation result for the psoas major muscle by use of

the Jaccard similarity coefficient JSC ¼ A\B
A[B

� �
[11] and the

true segmentation coefficient TSC ¼ A\B
A

� �
[12]. A and

B represent the muscle regions of the gold standard and the

recognition result, respectively. The JSC describes the ratio

of the area of intersection to the area of union. The TSC

describes the fraction of the area of true detection to the

area of the gold standard. The JSC is calculated for the 2D

CSA and the 3D volume. It is calculated by the selected

axial slice section at the Jacoby line from the top of the

pelvis automatically. Then, we compare the thickness at the

position at which radiologists measure the CSA for eval-

uation of our results. The method was implemented in a

computer that included two 2.99-GHz CPUs with 16-GB

memory.

2.3 Model-building process

The shape model of the psoas major muscle is constructed

so that it can be applied to the recognition of the muscle for

test cases. The anatomic definition of the psoas major

muscle is shown in Fig. 2. Figure 2a shows the spindle-like

shape of the psoas major, which is located symmetrically in

the abdomen as indicated by arrows in Fig. 2b [14]. The

radius of its transverse section is maximal at the longitu-

dinal center and minimal at its origin and insertion.

Including the psoas major muscle, all parts of the skeletal

muscles are connected to the skeleton. The connection

points are defined anatomically as origin and insertion. In

this paper, these anatomic connection points are automat-

ically detected as LMs for deciding the position of the

muscle on the skeleton, which is generated by use of a

previously reported method, described in [8]. Next, a line

connecting these LMs is determined as a centerline for

deciding the direction of the muscle. Finally, the surface of

the muscle is approximated by a quadratic function, which

is discussed in the following section.

In this way, the model for the muscle is described by a

quadratic function that has two parameters: a shape

parameter, a, which is defined by the training case and a

fitting parameter, b, which is defined dynamically by the

experimental case. The shape parameter describes the

inherent shape of the psoas major muscle, and the fitting

parameter describes the difference in shape between the

model and a test case (i.e., individual variations).

Figure 3 presents a flowchart of the process of shape

model generation. First, twenty cases in which there is no

disease or muscular atrophy in the target region are

selected. The first author of this paper manually extracted

the muscle regions. These regions were then inspected,

and, if necessary, the results were revised by the third

author, who is a medical expert on anatomy. Next, the

origin and insertion were inputted manually as fiducial

points (referred as LMs). This process corresponds to the

estimation of Pr(p | vol) in expression (2).

Fig. 2 Psoas major muscle

(flesh colored, indicated by

arrows). a Symmetrically

located left and right psoas

major muscles and b psoas

major muscle in the

intermediate part of a transverse

section. The psoas major muscle

is thin at the origin and insertion

and thick in the middle

Fig. 3 Flowchart of the shape

model-building process

8 N. Kamiya et al.



Table 1 shows the anatomic LMs of the origins and the

corresponding insertion of the psoas major muscle. The

psoas major muscle has five origins and one insertion. In

this table, the insertion of the psoas major is defined as the

center of mass of the lacuna musculorum, which is a point

that the psoas major passes through. The LM of this

insertion is therefore different from its anatomic definition.

The aim of making this change is to assume a location that

is always included in CT images of the torso. It is thought

that the lacuna musculorum, which is used in this paper,

can be used instead of the actual anatomic insertion, which

is the lesser trochanter of the femur, because the psoas

major passes through the lacuna musculorum [14].

Following the manual identification of origin and

insertion, the anatomic centerline of the muscle is obtained

by connecting the pair of LMs that were already inputted

manually [corresponding to the determination of h in

expression (2)]. These anatomic centerlines describe the

direction in which the muscle fiber runs. In the proposed

technique, we then ascertain the overall direction from two

or more centerlines. The straight line between the origin

and the insertion can be used for recognizing the muscle

orientation; the psoas major has five centerlines. Finally,

we approximate its outer boundary to complete the shape

model [corresponding to the determination of s in expres-

sion (2)].

The shape model of the psoas major is defined by a

function that indicates the distance from the center of the

muscle (centerline) to its outer border (indicated by the

white curve in Fig. 4a and also indicated by arrows in b). A

total of five shape model functions are generated by the

pairs of corresponding origins and insertions. Each func-

tion is defined so that its centerline connecting the origin

LM and insertion LM by the straight line is considered as

the x-axis. The origin of the x-axis is defined as the point

halfway between the anatomic origin point (i.e., the ver-

tebra) and the insertion point (i.e., the center of the lacuna

musculorum) of the psoas major muscle. The orthogonal

direction becomes the y-axis. The values of y can be

determined by substituting x values with a fixed interval to

the functions in Table 2. In the recognition process, which

is described later, this value of y is used as the structural

element’s radius for mask generation.

In the building of the model function, first, a Euclidean

distance transformation [15] is applied to the muscle region

obtained by manual extraction, and the distance value, yi

that corresponds to the xi on each centerline voxel is

obtained. Note that xi and yi are the coordinates for a set of

points on the surface of the muscle region. Next, these

distributions of the distance values are approximated by

use of the following quadratic function:

yi ¼ aix
2
i þ bi i ¼ 1; . . .; 5ð Þ; ð3Þ

where, i denotes the centerline corresponding to the origin

and the insertion pair that constitute the LMs. ai is the

gradient and represents the peculiar outer shape of the

psoas major, which is referred to as the outer shape

parameter. bi is the intercept of the function and indicates

the maximum radius of the psoas major. This fitting

parameter bi that is appropriate for each test case is

determined automatically in the recognition process. The

value of xi indicates the distance along the centerline from

the midpoint and is used in the recognition process. The

approximation accuracy of the quadratic function com-

pared with the manual muscle shape is described as the R2

value. The R2 value is obtained as the square of the value,

the covariance of the manual data point and the corre-

sponding values on the approximated curve divided by the

Table 1 Correspondence between origin and insertion

Origin Insertion

Thoracic vertebra XII

Lumbar vertebra I

Lumbar vertebra II Barycenter of the lacuna musculorum

Lumbar vertebra III

Lumbar vertebra IV

Fig. 4 Diagram of the shape model for the psoas major muscle (solid
line). a Example of shape model for LM pair of thoracic vertebra XII

and insertion (x-axis and orthogonal y-axis are indicated by dotted
lines) and b five shape models of five LM pairs

Table 2 Functions with R2 values in the outer shape model for the

psoas major muscle

Origin Approximate functions R2 value

Thoracic vertebra XII y1 = -1.81 9 10-4x1
2 ? b1 0.753

Lumbar vertebra I y2 = -4.29 9 10-4x2
2 ? b2 0.902

Lumbar vertebra II y3 = -5.68 9 10-4x3
2 ? b3 0.855

Lumbar vertebra III y4 = -8.01 9 10-4x4
2 ? b4 0.765

Lumbar vertebra IV y5 = -9.20 9 10-4x5
2 ? b5 0.660

Automated segmentation of psoas major muscle in X-ray CT images 9



multiple of standard deviation of each. Table 2 lists the

outer shape model functions generated by a quadratic curve

approximation and the corresponding R2 values; it indi-

cates that the average R2 value is 0.787, its maximum value

is 0.902, and its minimum value is 0.660.

2.4 Recognition process

Figure 5 is a flowchart of the recognition process. The

recognition process that uses the shape model generated as

described above is conducted as follows. First, original CT

images are inputted, and the segmented skeletal images are

generated as mentioned above. Next, LMs, which are the

anatomic feature points, are automatically recognized from

these segmented skeletal images [corresponding to the

determination of p in expression (2)]. Next, the anatomic

centerlines are generated [corresponding to the determi-

nation of h in expression (2)], and the shape model fitting

process takes place [corresponding to the estimation of the

fitting parameter bi, a sub-parameter of s in expression (2)]

in order that the psoas major muscle is recognized. Each

model curve is fitted on the centerline based on the LMs.

This curve gives the radius of the outer shape searching

area. Finally, the initial muscle region is determined with

the use of this searching area, and then the region-growing

technique [16] is applied for segmenting the final muscle

region.

2.4.1 LM recognition

Each LM is placed on a muscle’s origin or insertion, and its

location corresponds to the manually extracted LM that

was used in the model construction process. In the recog-

nition process, LMs are set up in a completely automatic

manner with the use of spatial positioning information on

the segmented skeletal images. Each LM is determined in

3D space. First, we select the skeleton (Th12 and L1–L4)

from the segmented skeletal images in which the LMs will

be placed. Next, we determine the 2D axial plane from the

selected skeleton. Finally, we determine target points in

this 2D axial plane. The details are as follows.

The LM of the origin is determined by use of positional

information from five points on the skeleton from the

twelfth thoracic vertebra to the fourth lumbar vertebra. In

the beginning of the process, the z coordinate of the LM (in

the direction of the body axis) is determined at the slice

through the center of gravity of each vertebra (Fig. 6a).

Each vertebra is selected from the segmented skeletal

images as mentioned above. Subsequently, the x and

y coordinates of the LMs are determined. First, the line of

symmetry that divides the human body area into two is

obtained by use of the center of gravity in the human body

area in the axial section (dotted line in Fig. 6b). Here,

potential rotation of the body is incorporated because this

method uses the positional information obtained from the

skeleton, and the movement of the attached muscle is based

on the skeleton. The positions indicated by the white points

in Fig. 6b are automatically recognized in the area

enclosed by the solid lines, with the following rules: they

must be (1) on the surface of a vertebra, and (2) in the most

Fig. 5 Flowchart of the

recognition process for muscle

regions

Fig. 6 Diagrams showing the

anatomic feature point

recognition. a Slice decision

(dotted line) using position

information for upper and lower

skeleton. b Anatomic feature

point recognition. The dashed
line shows the line of symmetry;

the solid line shows the area that

was searched, and the white dots
show recognized points

10 N. Kamiya et al.



dorsal and (3) the most internal position of the selected

skeleton. By this rule, the white point is located diagonally

opposite the intersection of the solid lines; at the anterior of

the vertebra and to the left and right edges of the vertebra

in Fig. 6b. The lacuna musculorum is automatically rec-

ognized based on our previous work [17], and the center of

gravity of the lacuna musculorum is determined as the LM

of the insertion.

In this study, all of the LMs were correctly recognized

because we employed all cases in which segmentation of

the skeletons succeeded [8].

2.4.2 Centerline building

In the centerline-building process, we automatically con-

nected the LMs that were determined above. The origins

and their corresponding insertions specified in Table 1 are

connected by the shortest possible straight lines, and five

centerlines are generated symmetrically with respect to the

spine. Figure 7 shows a volume rendering of a skeleton

with anatomic centerlines.

2.4.3 Model curve fitting

In the shape model-fitting process, an appropriate fitting

parameter bi of each shape model yi (i = 1,…,5) is

obtained from the input image by use of the model function

of Table 2. bi is obviously uniquely determined by the

coordinate pair of x and y based on the function in Table 2.

By defining the origin LM as Loi(ui, vi, wi) and the insertion

LM as Li(u, v, w) in correspondence with the centerline i,

the values (x, y) obtained in the following expression are

substituted for each function of Table 2:

x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ui �
ui þ u

2

� �� �2

þ vi �
vi þ v

2

� �� �2
r�����

�����
; 0

 !

:

ð4Þ

Expression (4) is used for calculation of bi in expression

(3). As already mentioned, the parameter ai in expression

(3) is determined in the model-building process as in

Table 2. In Table 2, each bi has not yet been decided

on. bi determines the vertex of the quadratic function,

representing the thickness of the psoas major muscle. At

the same time, bi and LMs take into account individual

differences in body size. bi is obtained by substitution of

the coordinate (x, y) in expression (3). In this study, we

substituted the values for one LM point. At the LM point,

y is zero and x is half the distance between two LM points.

As a result, the shape model function that is appropriate for

a specific test case is generated.

In the next step, the model functions generated above

are used for segmenting of the muscle region. These five

functions output the thickness of the psoas major muscle

in each position by substituting the coordinate on the

corresponding centerline. This coordinate is given by the

distance along the centerline from the midpoint. All coor-

dinates on the centerline are substituted for xi in each

function for determining the radius of the cross section in

each axial slice. The calculated radius is used for gener-

ating a mask image. The 3D mask image is created by

combining the sphere’s structural elements with the various

radii determined above. Sphere regions were created along

the centerline; these were overlapped mutually, represent-

ing the shape of the muscle as a whole. The region defined

by this shape model is employed as a mask image (Fig. 8a),

from which the initial muscle candidate region is obtained

by application of the Otsu threshold method [18] in this

mask region.

This initial region is typically smaller than the true

muscle region. Therefore, we made a fine adjustment on

this initial muscle region by searching for similar pixel

Fig. 7 Volume rendering of skeleton with anatomic centerlines. Each
color indicates a different anatomic centerline. Five centerlines are on

each side of the psoas major muscle

Fig. 8 Shape model of the psoas major muscle. a Psoas major muscle

mask generated by the shape model function. The different colors
correspond to the masks for five anatomic centerlines. b Example of

mask image (green) on an original CT coronal image

Automated segmentation of psoas major muscle in X-ray CT images 11



values in a radial direction to obtain the definitive muscle

region. The pixel values that are equivalent to the mean

pixel value of the initial candidate region were sought

radially at the boundary of the region and of the extended

peripheral regions. This fine adjustment based on region-

growing [16] is started from the axial section at the mid-

point (Fig. 4a) in the mask region. The region-growing is

controlled by the stopping rule that the area of the muscle

cross section is smaller than the initial area in the middle

section, i.e., keeping its spindle shape. Figure 8a shows a

mask image generated by the shape model function. Each

color represents the mask corresponding to each anatomic

centerline. Figure 8b is the mask superimposed on the

original CT image, showing that the initial mask region is

smaller than the actual muscle region.

3 Results

We applied this scheme to 80 CT images. Table 3 lists

the results of the recognition process in terms of the JSC

and TSC for the entire volume of the recognition results.

The average JSC and TSC were 0.723 and 0.762,

respectively. Note that the patient with the large error had

no disease in the muscle, but had a spinal curvature. This

spinal curvature caused the imbalance between the right

and left muscles in the body compared to the normal

cases, which caused the difference in the muscle volumes

between the right and left sides. As a result, the extracted

region on one side is expanded and that on the other side

is contracted, resulting in over- and under-recognition,

respectively.

Figure 9 shows the JSC of the CSA in each vertebral

body. As shown in the figure, a high accuracy rate of about

90% was obtained in each vertebral body section from L1

to L4. Figure 10 shows the recognition results for the psoas

major. The green, blue, and red regions indicate the region

of overlap between the gold standard and the recognition

results, the area of overextraction, and the area of under-

extraction, respectively. Figure 10a is a 3D view, which

represents the need for improvement in the accuracy

around the origin of the psoas major. The region near the

Th12 section has a low recognition accuracy compared to

that in the other sections, as shown in Fig. 9. Moreover, the

JSC value in the L3 section is lower than those in the L2

and L4 sections. This is a result of the overextraction of the

blood vessel, which is confirmed by the blue area in

Fig. 10a. The high JSC values in the L4 and L5 sections,

accordingly, indicate that the proposed method is effective

for automatic measurement of the volume of the psoas

major near the Jacoby line, which is where clinical radi-

ologists measure a muscle’s CSA and thickness. An

enlarged view of the result in this cross section is shown in

Fig. 10b.

Table 3 Recognition accuracy for the psoas major muscle

JSC TSC

Min. 0.683 0.677

Max. 0.904 0.971

Average 0.723 0.762

JSC Jaccard similarity coefficient, TSC true segmentation coefficient

Fig. 9 Average JSC of CSA in each vertebral body for 80 cases.

Each error bar indicates the maximum and the minimum JSCs

Fig. 10 Segmentation results for psoas major muscle compared to

the gold standard, for a 49-year-old male (a, b) and an 84-year-old

female (c, d). a, c 3D view of segmentation results. b, d Segmentation

results compared to the gold standard in transverse section at the

Jacoby line. Green indicates the area of overlap; blue, the area of

overextraction; and red, the area of underextraction
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4 Discussion

As mentioned above, our method was not intended for

measuring the muscles in patients with severe muscle

diseases. Rather, the model created with normal cases can

be used for recognizing cases with abnormal muscles. Our

database did not contain cases with muscle disease,

because CT images were not intended for diagnosis of

muscle diseases. However, we also tested the proposed

method in some aging patients. Elderly patients often have

a bent spine or decreased muscle [3]. Figure 10c shows

the segmentation results for an 84-year-old woman. This

woman had a slight curvature of the spine. Accordingly,

the psoas major muscle had decreased in size on one side.

Figure 10c visually confirms the decrease of the muscle on

the left side. The JSC and TSC for this case were 0.772 and

0.848, respectively.

Figure 10d shows the results in the transverse section at

the Jacoby line. The results indicate that the segmentation

performance for aging patients is also acceptable at the

Jacoby line. The root mean square error for the muscular

thickness was 3.44 mm (5.50 pixels), which indicates that

our technique is also effective for the automatic quantita-

tive measurement of the thickness of the psoas major

muscle.

Regarding the proposed method, the anatomic shape of

the psoas major muscle could be reproduced through the

use of a mathematically simple quadratic function with two

parameters that approximated the muscle shape, according

to the mask area superimposed upon the original CT image

in Fig. 8b. The evaluation of the accuracy of the model

function for the psoas major muscle shape in terms of the

R2 value is shown in Table 2. The average R2 value was

0.787, and the value for the function y5 was low compared

with those for the function y1–y4. The reason is that the

region of the psoas major is small in the vicinity of L4,

where the end point of the psoas major converges, com-

pared with the other areas. It is therefore difficult to con-

struct a precise model from a simple function like the

quadratic function proposed in this study. Such a function

is suitable; however, for the approximation of a round

shape with use of few parameters. It would be necessary to

verify in the future whether the shape of a muscle can be

expressed by use of other functions.

As mentioned above, in this research, the shape of the

psoas major muscle was modeled by a mathematical

function, which was then used for muscle recognition in a

CT image. As a result, we were able to show not only that

skeletal muscle recognition in a CT image was possible, an

achievement that a past study considered difficult, but also

that this method could be applied to images obtained by

other imaging modalities because it is based on anatomic

information, as in an MRI, for example.

We should note that the technique of the proposed

method depends on the segmentation results for the skel-

eton [8]. Moreover, it is also possible to correct LMs that

have been placed at wrong positions, if the necessity arises,

by manual intervention. Further, such semiautomatic cor-

rection is inexpensive in terms of time as compared to the

manual segmentation of an entire muscle region in the

original CT images.

The processing time required for the proposed technique

is about 3 min. This reduces the muscle measurement

workload of the radiologist considerably. For instance,

when the authors (N.K., a researcher in engineering who

manually segmented the data, and H.C., a specialist in

anatomy who verified the accuracy based on medical

knowledge) completely segmented a muscle manually,

30 min or more time was needed. By semiautomatic

extraction with the proposed technique, it was possible to

complete the segmentation in about 10 min. In this regard,

with the proposed automated method, a reduced workload

becomes possible in clinical settings for radiologists who

currently measure the muscular thickness and volume

manually.

5 Conclusion

A fully automated method for recognizing the psoas major

muscle in X-ray CT images, by use of a shape model, is

proposed in this study. Two parameters—an outer shape

parameter and a fitting parameter—are used for the defi-

nition of a quadratic function that approximates the shape

of the muscle, in this case the spindle shape of the psoas

major. This method was applied to 80 CT cases. In the

recognition of the psoas major, the average values for the

JSC and the TSC were 0.723 and 0.762, respectively.

These results show that the shape model can provide the

initial region for distinguishing the skeletal muscle from

other organs, which is otherwise difficult to do in CT

images.

The mean error for the thickness was 3.4 mm in the

section of the Jacoby line. In addition, the required mea-

suring time was reduced by 90% as compared to manual

extraction and by 65% if semiautomatic correction was

included. This result shows that the proposed method can

greatly reduce the time required for certain tasks performed

by radiologists. Therefore, the proposed method can be

used for the analysis of CSA and muscular thickness in a

transverse section, offering radiologists an alternative to

manual measurement.

We considered that the error margin in a 2D section was

within the clinically allowable range according to the

anatomic specialist. Currently, the muscular volume is not

evaluated quantitatively in clinical situations. However,

Automated segmentation of psoas major muscle in X-ray CT images 13



quantitative 3D analysis of the muscle volume would

become possible by the proposed method with minimal

manual correction by a radiologist. We applied the model

only to subjects with normal muscles as a preliminary

study. In the future, the method should be applied to cases

with muscle atrophy for verifying the possibility of esti-

mating changes in muscle thickness.
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