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球面パラメータ空間での適応的なサンプリングを用いた 
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あらまし  統計形状モデルは有効的な手法と認められ、医用画像のセグメンテーションに使用されている。統計
形状モデルの構築では、各形状の対応点の決定が重要な課題であり、近年ＭＤＬ法を用いた手法が提案した。ＭＤ
Ｌ法の有効性が証明されたが、決定した対応点で構成したメッシュは元の形状メッシュより精度が低い。この問題
を解決するため、球面のパラメータ空間で適応的なサンプリング手法を提案し、従来のＭＤＬ法を改良した。 
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Abstract  Statistical shape models (SSMs) is a very efficient method for medical image segmentation. An important 

problem of building SSMs is how to determine the corresponding points. Although minimal description length (MDL) was a 

good method to find corresponding points, it was suffered from the problem that the meshes constructed by the determined 

corresponding points were not precise to represent the original shapes. We tried to resolve this problem by an adaptive 

sampling method on the spherical parameter space in this paper. 
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1. Introduction 
In order to reduce effects of noise in medical images, 

there had been more and more researches focused on 

including statistical information in practical problems. 

Statistical shape models (SSMs) was such a way to make 

use of statistical information of shapes as priors to 

increase the robustness of image processing algorithms. In 

recent years, lots of researchers had successfully applied 

SSMs in clinical segmentation problems and achieved 

promising results. For example, it was reported that the 

three best rated fully-automatic algorithms were based on 

SSMs in the 3D segmentation clinical contest held in the 

MICCAI Workshop in 2007 [8].  

According to our knowledge, several SSMs had been 

proposed, which were point distribution models 

(PDMs)[9], m-rep[10], SPHARMs[11,12], and so on. We 

focused on PDMs in this paper since it was the most 

widely used SSMs. Given a set of corresponding points of 

N training shapes, generalized procrustes alignment [13] 

was applied to eliminate the differences on translation, 

rotation and scaling of each shape. Then principal 

component analysis (PCA) was applied on these aligned 

points to calculate the base-functions and the statistical 

shape models can be represented by Eq. 1.
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Figure 1.  Corresponding points determined by the original MDL method [5], dithering-based MDL method [18] and 

the proposed method 
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where s  was the mean shape, iv was the base-functions 

and iα  is the parameters for the statistical shape models.  

The main problem of SSMs construction was how to 

determine the corresponding points on each shape. At first, 

the determination of correspondence was usually carried 

manually to find landmarks. It was probable for simple 2D 

shapes, such as human faces, but obvious disadvantages 

rely on both of big burden of workflows and the inevitable 

bias of different people. Especially for the complex 3D 

clinical data, manual determination of hundreds or 

thousands of landmarks are not practical. Therefore, lots 

of researches focused on automatic way to find 

corresponding points [1].  

The determination of shape correspondence can be 

generalized as a registration problem. Many methods were 

proposed, such as surface matching based methods [14, 

15], volume-based methods [16], and group-wise based 

methods [3,5,6,17]. A typical group-wise based method 

was proposed in [3], where a group of shapes were aligned 

with each other according to an information-based theory, 

called minimal description length (MDL), in order to get 
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the simplest description for the constructed statistical 

shape models. Although this method was efficient to 

obtain the corresponding points, its calculation was 

complex and expensive. This problem was resolve by [6], 

where a simpler version of MDL was proposed. In order to 

make the new version of MDL to converge faster, gradient 

descent based method was tried in [17] for 2D cases to 

replace the time-consuming Nelder-Mead optimization 

method. Followed the work in [17], gradient descent was 

applied to the 3D objects in [5] and the free source codes 

of this method was also given by [22].  

Although it was showed that the MDL based method 

was efficient to automatically identify the corresponding 

points for 3D objects, a drawback was that the determined 

corresponding points were usually dense on a part of 

original surfaces while sparse on the rests. An example of 

the results was given by [5,22] was given in the first row 

of Fig. 1. It could be seen that the determined 

corresponding points were gathered on the bottom part of 

livers while there were almost no corresponding points on 

the top of livers. For lungs, the corresponding points were 

found mainly around the middle part and there were less 

points on the top and bottom. This problem caused that the 

meshes constructed by the determined corresponding 

points could not represent the original shapes very well. 

This non-accuracy brought bias into the statistical shape 

models. In [18], a remeshing technique [19] based on 

dithering [20] was applied to reconfigure sampling 

positions on the sphere parameter space in order to make 

the corresponding points to be uniformly spread on the 

original shape surfaces. According to [18], the surface of 

the unit sphere (in the parameter space) was separated into 

two half spherical parts. For each part, a disc-shaped 

control map was constructed which can reflect the 

distribution of vertices on the original shapes. In dense 

parts, the control map was set to be low-level values while 

for sparse parts it was set to be high-level values. For the 

inside parts of the control maps, dithering [20] was 

applied to find the sampling positions (black dots). For the 

boundary parts (the outer circle), a 1D dithering was 

applied in order to get the common sampling positions. 

Finally, the determined sampling positions were treated as 

vertices and 2D Delaunay triangles were firstly built 

separately on the two discs and then the two partial 

meshes were concatenated by the common sampling 

positions on the outer circles to generate a single mesh. 

Since there are no open scours codes for [18], we 

implemented a version by ourselves. Since both of the 

paper [18] and [19] were lack of the detailed descriptions 

on how to adjust the control maps in order to get a certain 

number of sampling positions, we implemented the work 

by our best guess. Unfortunately, we found the density of 

sampling positions on the concatenated part (outer circles 

for the two control maps) were usually denser than the rest 

parts in our implemented version. Examples were given in 

the second row of Fig. 1. Just as what the black arrows 

points to, a circle-shaped artifacts (the denser line) existed 

on both the livers and lungs. In order to correct this 

problem, we proposed a particle system based method to 

get the sampling positions on the sphere parameter space. 

2. Proposed Method 
  MDL method could only be applied to genus-zero 

objects. Since a lot of organs obeyed this condition, the 

MDL method was widely used. Before the determination 

of corresponding points, the original shapes had to be 

firstly transformed onto a unit sphere. This procedure was 

usually called parameterization. Parameterization could be 

seen as a projection for each vertex of the original shapes 

from the original space onto the unit sphere in the 

parameter space. Therefore each shape had a counter-part 

of parameterized mesh on the unit sphere. MDL would 

drive these parameterized meshes sliding on the parameter 

space in order to align all shapes together. After the 

alignment, the same part of different shapes would be 

located on the same positions on the unit sphere. The 

vertices of the parameterized meshes would be gathered in 

some regions on the sphere while be sparse in other 

regions. If sampling positions were uniformly spread on 

the unit sphere, there would be less points in the dense 

regions while more points on the sparse regions. This is 

the reason why the work in [5] causes the under- and 

over-sampling problem on the original shapes.  

  In this paper, we proposed an adaptive sampling method 

to correct the sampling problem of the original MDL 

method. We hope to get more sampling points on the dense 

regions while get less points on the sparse regions. This 

was achieved by a carefully designed particle based 

system. Particle-based remeshing was proposed in [21] 

which was used to remesh surfaces of shapes. A set of 

particles was firstly put onto original iso-surfaces of 

shapes. Each particle had the repulsive forces push its 

surrounding particles away from itself. Nearest the 

distance was, much more forces it gave. Meanwhile, a 

weight term was also associated to each force term. The 

weights reflected geometrical information, such as 

curvature, for the positions where the pair of particles 
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were located. The forces for all particles determined an 

energy function for the particle system and each particle 

was slided along the iso-surface in order to minimize the 

total energy. Finally, these particles were treated as the 

vertices of the new mesh of the original shape.  

  Here, we adopted the idea of the particle-based system 

to find the optimal locations for the sampling on the unit 

sphere. A certain number of particles was placed on the 

surface of the unit sphere. The total energy of our particle 

based system was calculated by Eq. 2 
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where ijE  was the force term of a pair of particles and 

ijω  was the weight. For the force term, we adopted the 

original one proposed in [21], where the definition was 

given by Eq. 3  
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where ijr  was the Euclidean distance of a pair of 

particles. σ was the parameter of the particle systems. 

We designed the weight term which reflected the 

information about how the particles spread on the unit 

sphere. The definition of our proposed weight term was 

given by Eq. 4 
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where ix  was the coordinate of where the i-th particle 

was loclated. )( ip x gave the probability for vertices of 

parameterized shape meshes existed on the position of ix , 

and a, b, γ  were the parameters of the particle-based 

system. Here we adopted the parzen-window method to 

estimate the probability density function for the vertices 

of parameterized shape meshes. 

  Gradient descent was used to was minimize Eq. 2 to 

find the optimal sampling positions on the unit sphere. 

Finally, these positions were treated as vertices and 

triangle meshes were built.  

3. Experiments 
  Experiments were done on two kinds of data, 28 cases 

of livers and 17 cases of left and right lungs. The original 

MDL method [5], the dithering based MDL method [18] 

and the proposed method were applied on the two kinds of 

data to calculated the corresponding points. Then three 

different statistical shape models (SSMs) were built, and 

the generalization and specification experiments were 

done to evaluate the performances of the three SSMs. In 

both of the generalization and specification experiments, 

differences of two shapes was calculated by Eq. 5. 
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where X and Y are the two sets of the vertices for two 

shapes. The number of vertices for the two sets were N and 

M respectively.  ),( yxd  was the Euclidean distance of 

a pair of vertices of the two shapes. 

  Fig. 2 gave the results in the specification and 

generalization experiments. Both of the dithering-based 

and the proposed method were much better than the 

original MDL method. Although the dithering-based 

method was better than the original MDL, it was a little 

worse than the proposed method.  

4. Conclusion 
  Although MDL was a good method for the 

determination of corresponding points of shapes [5], it 

suffered that problem that the determined corresponding 

points were not uniformly spread on the original shapes. 

Although there was a dithering-based method [18] to 

improve MDL method, we found it was suffered from the 

circle-shaped artifacts according to our implementation. In 

this paper, we proposed a particle-based method to resolve 

the problem of the original MDL method. Experiments 

were done by livers and lungs data. According to 

experimental results, it was showed that the proposed 

method was better than both of the original MDL method 

and a dithering-based MDL improved method. 
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Figure 2.  Experimental results of generalization and specification experiments 
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