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Purpose:  Organ  segmentation  is an  essential  step  in  the  development  of  computer-aided  diagnosis/surgery
systems  based  on  computed  tomography  (CT)  images.  A  universal  segmentation  approach/scheme  that
can  adapt  to  different  organ  segmentations  can  substantially  increase  the  efficiency  and  robustness  of
such computer-aided  systems.  However,  this  is  a very  challenging  problem.  An  initial  determination
of  the  approximate  position  and  range  of  a  target  organ  in  CT images  is  prerequisite  for  precise  organ
segmentations.  In  this  study,  we  have  proposed  a universal  approach  that  enables  automatic  localization
of  the  approximate  position  and  range  of  different  solid  organs  in the  torso  region  on  three-dimensional
(3D)  CT  scans.
Methods:  The  location  of  a  target  organ  in a 3D  CT scan  is  presented  as  a 3D  rectangle  that  bounds  the
organ  region  tightly  and  accurately.  Our  goal  was  to  automatically  and  effectively  detect  such  a  target
organ-specific  3D  rectangle.  In our proposed  approach,  multiple  2D detectors  are  trained  using ensemble
learning  and  their  outputs  are  combined  using  a collaborative  majority  voting  in 3D  to  accomplish  the
robust  organ  localizations.
Results: We  applied  this  approach  to  localize  the  heart,  liver,  spleen,  left-kidney,  and  right-kidney  regions
independently  using  a CT  image  database  that  includes  660  torso  CT  scans.  In  the  experiment,  we  man-
ually  labeled  the  abovementioned  target  organs  from  101  3D  CT scans  as  training  samples  and  used  our
proposed  approach  to localize  the  5 kinds  of  target  organs  separately  on  the  remaining  559  torso  CT
scans.  The  localization  results  of  each  organ  were  evaluated  quantitatively  by  comparing  with  the  corre-
sponding  ground  truths  obtained  from  the  target  organs  that  were  manually  labeled  by  human  operators.
Experimental  results  showed  that  success  rates  of  such  organ  localizations  were  distributed  from  99%
to 75%  of the  559  test  CT scans.  We  compared  the  performance  of  our  approach  with  an  atlas-based
approach.  The  errors  of  the  detected  organ-center-positions  in  the  successful  CT  scans  by  our  approach
had a  mean  value  of  5.14  voxels,  and  those  errors  were  much  smaller  than the  results  (mean  value  about

25 voxels)  from  the  atlas-based  approach.  The  potential  usefulness  of the  proposed  organ  localization
was  also  shown  in  a preliminary  investigation  of  left kidney  segmentation  in  non-contrast  CT images.
Conclusions:  We  proposed  an  approach  to  accomplish  automatic  localizations  of  major  solid  organs  on
torso  CT  scans.  The  accuracy  of  localizations,  flexibility  of  localizations  of  different  organs,  robustness  to
contrast  and  non-contrast  CT  images,  and  normal  and  abnormal  patient  cases,  and  computing  efficiency
were  validated  on  the  basis  of  a  large  number  of torso  CT  scans.
∗ Corresponding author. Tel.: +81 582306510; fax: +81 582306514.
E-mail address: zxr@fjt.info.gifu-u.ac.jp (X. Zhou).
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1. Introduction

Three-dimensional (3D) images of anatomical structures of a

patient are critical factors that support diagnosis, surgery, and
therapy in clinical medicine. A modern radiographic computed
tomography (CT) scan can generate a 3D volumetric image that
provides detailed anatomical information of a human torso within
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0 s. However, a long time and experience are required to interpret
uch volumetric CT images by the traditional method to iden-
ify suspicious regions. Therefore, development of computer-based
mage analysis algorithms and visualization tools is expected to
nable doctors increase efficiency and accuracy of interpretation,
nd reduce tedium and oversights during CT image interpretation.

A fundamental component of such a computer system is accu-
ate and efficient organ segmentation. Separating a target organ
egion from the background by identifying the contour (surface in
D) of the organ region is the major goal of organ segmentation.
owever, it may  not be feasible to search for all voxels in a CT scan

o determine the correct contour of a target organ. Detecting the
enter position and deciding the range (a 3D bounding rectangle)
f the target organ in a CT scan is a practical pre-processing step
hat can be very useful for facilitating accurate organ segmentation.
uch a 3D rectangle not only increases the accuracy and reduces the
ifficulty for further image segmentation, but also describes local
eometry and density properties that can be used for diagnosis.
n practice, a torso CT scan always shows the complex anatomical
tructures of all inner organs. Thus, automatic localization of differ-
nt organ regions in torso CT scans is a very difficult problem that
emains to be addressed.

Object localization is a major topic in the research field of com-
uter vision, and ensemble learning such as AdaBoosting is an
fficient way to solve face detection problems from pictures and
ideos [1,2]. Recently, ensemble learning has also been used for 3D
T image analysis, including heart structure recognition [3],  liver
egmentation [4],  and anatomical landmark detection [5].  Those
tudies have directly extended the 3D-Haar features and probabilis-
ic boosting-tree [6] that are used for face or nature object detection
nd applied them to 3D organ localizations in CT images. In another
pproach, decision forests based on long-range spatial context [7]
ere successfully used for the localization of solid organs such as
eart, lung, and liver in CT images. All of these works reported
ood performance and demonstrated the potential of using ensem-
le learning for organ segmentation and localization in CT images.
owever, such approaches had a drawback that classical ensem-
le learning requires a large number of training samples so that
he usefulness and robustness of the trained detector can be main-
ained for unseen samples. In particular, 3D CT images have a high
eature dimension and to avoid the over-learning problem, a large
umber of training samples are required. However, in practice, it

s difficult to collect a large number of labeled 3D CT scans to ful-
ll this requirement. For example, as far as we  know, no previous
ork reported the performance using more than 500 CT scans. How

o train a useful detector for organ localization on the basis of a
mall number of CT scans and validate its performance are still
hallenging issues.

In this paper, we propose a new approach based on ensemble
earning to localize major solid organs in 3D CT scans. The local-
zation scheme generated by the proposed approach is applicable
or different solid organ localizations, adaptive to both non-contrast
nd contrast-enhanced 3D CT images, and is robust to the unknown
rregularity in abnormal CT scans. Due to the practical nature of clin-
cal medicine, two additional requirements were also considered:
1) using only a small number (about 100) of CT scans for training
nd (2) accomplishing the organ localization quickly (within 1 min)
n the basis of a general computer.

To satisfy these two  requirements, we introduce two  special
omponents into ensemble learning. First, we  carry out organ
etection on a 2D slice unit instead of a 3D scan. In this case, each
D CT slice from the same patient acts as an individual training

ample. This way, even a small number of manually labeled 3D CT
cans can provide a large number of 2D slices for training. Second,
n the basis of the fact that the organ appearances on adjacent
D slices along the same direction are similar to each other, we
Fig. 1. Processing flow for detecting organ locations in a three-dimensional com-
puted tomography (3D CT) scan. (*MBR, minimum bounding rectangle.)

train three 2D location detectors to generate multiple candidates
for organ location along the three orthogonal (sagittal, coronal, and
axial) body directions, respectively. We  then use majority voting
of those candidates to achieve a highly accurate 3D organ localiza-
tion. By adopting a cascade structure [1] and parallel computing
technique, the proposed organ localization is computationally very
efficient.

This paper is organized as follows. Section 2 gives a technical
overview of the proposed approach and a detailed description of the
2D detectors and 3D majority voting. The details of the experiment
for localizing 5 kinds of solid organs on the basis of the approach
proposed above are described in Section 3 and the results are shown
in Section 4. We  have discussed the performance of the proposed
method in Section 5 and have given a conclusion in Section 6.

2. Methods

The process flow of the proposed approach is shown in Fig. 1.
In this paper, we  handled the location detection of different inner
organs separately and independently. Our method was  to treat 3D
organ localization in a 3D CT scan as detecting several independent
2D objects in a series of 2D image slices. Obviously, this solution can
reduce the feature dimension (3D to 2D) and increase the number
of training samples (one 3D training sample consists of a large num-
ber of 2D training samples) during ensemble learning. This should
increase the robustness of the trained detector for unknown sam-
ples according to Occam’s razor. For an unknown 3D CT scan, our
method applies different 2D detectors to each voxel independently
to detect a number of 2D candidates of a target along three orthog-

onal directions and votes those 2D candidates back to the 3D space.
Finally, we decide the existence and approximate center position
of the target by checking the mutual consent of the responses from
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ll 2D detectors and select the majority of the range of the related
D candidates in the 3D voting space as the target location.

.1. Overview of the proposed approach

The location of an inner organ is defined by a ground-truth 3D
inimum bounding rectangle (MBR) that covers all the voxels in

he target organ region, where the MBR  is aligned with the x, y
nd z-axes, i.e., its six faces are parallel to x–y, y–z, and z–x planes,
espectively. The 3D MBR  of an organ can be uniquely described
y the two corners Pmin = (xmin, ymin, zmin)t and Pmax = (xmax, ymax,
max)t. The xmax, ymax, zmax and xmin, ymin, zmin are the maximum
nd the minimum coordinates, respectively, of all the voxels in
he organ region along the sagittal, coronal, and axial body direc-
ions. This way, the problem of detecting the location of an inner
rgan is reduced to the problem of finding the two  MBR  corners
min and Pmax. Instead of directly finding Pmin and Pmax for the 3D
BR, we try to find three 2D MBRs, which are the projections of

he 3D MBR  onto the x–y,  y–z,  and z–x planes: the 2D MBR  Rz on
he x–y plane, defined by the two corners Pzmin = (xmin, ymin)t and
zmax = (xmax, ymax)t; the 2D MBR  Rx on the y–z plane, defined by the
wo corners Pxmin = (ymin, zmin)t and Pxmax = (ymax, zmax)t; and the 2D

BR  Ry on the z-x plane, defined by the two corners Pymin = (zmin,
min)t and Pymax = (zmax, xmax)t. As summarized in Fig. 1, we train
hree 2D location detectors to identify a number of 2D MBRs Rx, Ry,
z candidates independently on each sagittal-, coronal-, and axial-
irection slice of a 3D CT scan. Finally, the corners of the detected 2D
ounding rectangles are back-projected to the 3D space and voted
or estimating the underlying 3D MDR.

.2. Training of the 2D location detectors

A solid organ region in a 3D CT scan is constructed by a series of
onsecutive 2D slices along a given direction (x, y, or z). The appear-
nce of an organ in each 2D slice is highly correlated and similar
o its neighbor slices. Our basic assumption is that the appearances
f a solid organ on 2D slices along the same direction are similar
nd could be recognized by a single 2D detector. Here, we  only
equire a “weak” 2D detector, which may  have an optimal balance
etween the false positive (FP) and true positive rates, enhancing
oth efficiency and quality. This is exactly the strength of tradi-
ional ensemble learning approach. The later majority voting step
ould further reduce FP rate and ensure the correct detection.

We took the 2D slices from the 3D training CT scans (with the
anually labeled ground-truth 3D MBRs) for training the 2D organ-

ocation detectors as shown in Fig. 2. Specifically, the slices along
he sagittal, coronal, and axial directions are used for training the
etectors for finding 2D MBRs Rx, Ry, Rz candidates, respectively.
ithout loss of generality, in the following we focus on describing

he training algorithm for finding 2D MBR  Rz candidates. We  col-
ected slices from 3D training images along the axial body. If a slice
ntersected the ground-truth 3D MBR, we further checked the 2D
ounding rectangle resulting from this intersection. If the corseted
arget-organ in this slice was representative (the target-organ pix-
ls count was approximately over 50 percent of the 2D bounding
ectangle area), we cropped this slice by the 2D bounding rectangle
nd then took the cropped slice as a positive 2D training sample. All
he positive training samples along the axial body were arranged
o a 2D rectangle with a size Sa by image interpolation; Sa was
mpirically decided as one-fourth of the average size of positive
raining samples in this study. We  randomly selected a set of train-
ng slices cropped by rectangles with size same as that of Sa that

id not overlap with the ground-truth MBR  as negative 2D training
amples. A set of simple stump classifiers based on 2D Haar-like
eatures (see Appendix A and Fig. 3) was used for detection. A typ-
cal detecting window had a large number of Haar-like features;
specified by the left-upper position x, y, size w, h and a rotation angle (see Appendix
A).

the details of these features have been explained in the study [2].  A
cascaded AdaBoosting algorithm [1] was applied to select a number
(100–200) of useful features and combine those stump classifiers
to a cascaded structure, as shown in Fig. 4. This cascaded struc-
ture acts as a detector that can be applied to other axial-direction
CT slices for the identification of 2D MBR  Rz candidates. Likewise,
we trained 2D detectors to identify 2D MBRs Rx and Ry candidates
using the slices along the coronal and sagittal directions. The tech-
Rejec ted  ROIs

Fig. 4. Cascade structure based on AdaBoost classifiers for detecting candidates of
target organ sections on 2D slices.
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.3. Majority voting for final organ location estimation

For an unknown test 3D CT scan, we first applied the three
rained 2D organ-location detectors on all the slices along the three
rthogonal directions, respectively. Scanning was repeated and the
ize of the detecting window was increased by 10% between the
ubsequent scans. By using variable sizes of detecting window, the
etector can find all the candidates who may  show spatial resolu-
ions and physical sizes different from those of the training samples
n test CT images. Clearly, 2D rectangles detected from different
lices will not lead to exactly identical values for xmin, ymin, zmin,
nd xmax, ymax, zmax because of various noise and location detection
rrors. Based on the detected 2D rectangles, we can apply a major-
ty voting technique to achieve an optimal estimate of the xmin, ymin,
min, and xmax, ymax, zmax values. This proposed approach consists
f the following steps:

tep 1. Given an input test 3D CT scan A, we constructed an all-zero
output 3D volumetric image B, which was  the same size as
A.

tep 2. For each slice along the sagittal, coronal, or axial direction
in A, we used the corresponding 2D organ-location detector
to detect 2D rectangles. Note that there was no constraint
for the number of 2D rectangles detected per slice.

tep 3. We  looped over all of the 2D rectangles detected in Step
2. Whenever a voxel in A was covered by a rectangle, we
increased the intensity value of the corresponding voxel in
the output image B by 1.

tep 4. The voxel intensity in the output image B took a value of
0, 1, 2, or 3. A voxel intensity of 3 indicated that this voxel
was located in the detected 2D rectangles along both sets
of sagittal, coronal, and axial directions and that the corre-
sponding voxel in A showed a strong likeliness to be covered
by the desired 3D MBR. We  found that the 3D connected
components based only on voxels with an intensity of 3 in
B and then selected a 3D connected component with the
largest volume as the candidates for the target organ. If no
voxel in B has an intensity of 3, the algorithm terminated
with no target detected, i.e., the organ is not involved in this
3D CT scan or may  have been removed by surgery.

tep 5. For the selected 3D connected component, we found its
gravity center by averaging all of the involved voxels (with
an intensity of 3 in image B) to find the voxel Vc closest
to this gravity center. Then we used all the voxels with a
nonzero intensity in B to find the connected component that
contained voxel Vc.

tep 6. The voxels with nonzero intensity in B, and were not
included in the connected component found in Step 5, were
treated as outliers. All 2D rectangles detected in Step 2 that
covered the outlier voxels were discarded.

tep 7. For the remaining 2D rectangles, we checked their xmin, ymin,
zmin and xmax, ymax, zmax coordinates and constructed a his-
togram for each one of these six coordinates. For example,
the histogram for xmin describes the number of occurrences
of each possible xmin used in the remaining 2D rectangles
along the y and z directions (refer to Fig. 5).

tep 8. These six histogram functions were smoothened by trian-
gular windowing and then the optimal xmin, ymin, zmin and
xmax, ymax, zmax were chosen by maximizing their respective
histogram functions. For example, xmin = argmax(Hist(xi)),

as shown in Fig. 5. These optimal xmin, ymin, zmin and xmax,
ymax, zmax defined a 3D rectangle, which we  used as the
final estimate of the underlying 3D MBR, and provided a
detection location for the target organ in this 3D CT scan, as
illustrated in Fig. 5.
multi-slice (Ri), triple-direction (sagittal, axial, coronal) redundancy. Another point
Pmax can be decided by the same method.

3. Experiments

A database containing 660 patient cases (male, 344; female, 316;
age range, 29–92 years) of 3D volumetric CT scans were used in
our experiment. These 3D CT scans were generated in Gifu Univer-
sity Hospital by two different multi-slice CT scanners (LightSpeed
Ultra16, GE Healthcare, and Brilliance 64, Philips Medical Systems).
All CT scans were obtained using a common protocol (120 kV/Auto
mA)  and covered the entire human torso region. Each 3D CT scan
had approximately 800–1200 axial CT slices with an isotropic
spatial resolution of approximately 0.625 mm and a density (CT
number) resolution of 12 bits. Among these 660 3D CT scans, 272
cases used contrast media for enhancement. All of these CT scans
were taken for patients with certain real or suspicious abnormali-
ties. Furthermore, the left kidney in 16 patients, the right kidney in 6
patients, and the spleen in 10 patients had been surgically removed.

The inner organs such as the lungs, heart, liver, spleen, pancreas,
kidney, and colon are major targets during CT image interpretation.
Besides the lungs and some parenchymal organs such as the colon,
which can be identified by pre-filled air regions, most of the solid
organs had similar intensities and indistinct contours that cannot
be easily localized and segmented. In this paper, we selected such
solid organs to validate the performance of the proposed approach.
In fact, we  selected the heart, liver, spleen, left kidney, and right
kidney as localization targets in this experiment.

The 3D MBRs (Pmin, Pmax) of each target organ in each 3D CT
scan were manually marked by an anatomist, author H.C. One hun-
dred and one non-contrast 3D CT scans were randomly selected for
training. Considering that one kidney was removed in some images,
91 3D CT scans were used for training the left kidney detectors and
97 3D CT scans for training the right kidney detectors. This led to
700–1800 positive 2D training samples and 10,000–25,000 nega-
tive 2D training samples that were used to train three 2D location
detectors, each along the sagittal, coronal, and axial directions.

As mentioned above, a cascaded AdaBoosting algorithm [1]
using Haar-like features [2] was  applied for training the three 2D
location detectors (see Fig. 2) using the positive and negative 2D
training samples along the three different directions. The detectors

for each organ were trained separately and independently. Each 2D
location detector consisted of 10–15 cascades and each stage in the
cascade was a “strong” classifier by combining (boosting) 10–30
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Fig. 6. An example of organ localization results. Three slices that pass through the detected center position of the (a) heart, (b) liver, (c) spleen, (d) right kidney, (e) left kidney
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n  a CT scan are shown. Green box indicates the detected organ location (minimum
gure caption, the reader is referred to the web version of the article.)

eak classifiers. The window sizes of the 2D detectors in the x, y,
nd z directions were initialized to (42, 36, 52), (70, 50, 70), (50,
0, 50), and (46, 46, 76) voxels for scanning the heart, liver, spleen,
nd right/left kidney, respectively. In the voting process described
n Step 8, a function returns a 5-point triangular window that was
sed for smoothing the histograms in three directions.

. Results

The proposed approach was applied to detect the heart, liver,
pleen, left kidney, and right kidney locations in 559 3D CT scans in
he database that were not used for training. An example of the
etection results in a 3D CT scan is shown in Fig. 6(a)–(e). The
omputing time for detecting each organ location was less than
5 s/3D CT scan using a computer equipped with an Intel Due2Core
.23 GHz CPU. Accuracy of the organ localization was  evaluated
uantitatively by comparing the detected 3D rectangle with the

round-truth 3D MBR. The volume coinciding between these two
D rectangles, the detected rectangle A and the ground-truth B (JSC:
accard similarity coefficient = A ∩ B/A ∪ B), and the Euclidean dis-
ance between the centers of these two 3D rectangles (Distc) were
ding rectangle of the target organ). (For interpretation of the references to color in

used as evaluation measures. The evaluation results using these
two measures are shown in Figs. 7 and 8, respectively.

In this study, the detected location was  considered to be cor-
rect if the detected 3D rectangle and the ground-truth MBR had a
JSC > 50%. Note that the criterion of JSC > 0.5 does not mean that we
only require 50% of the volumes of the two  involved rectangles to
overlap. Fig. 9 shows two examples of heart and liver localizations
that have the smallest JSC values in the experiment. We  can see
that some unsuccessful results with a JSC < 50% can also provide
approximate locations of the target organs. The histogram of the
JSC in Fig. 9 indicates that the heart locations in 99% (556/559), liver
locations in 97% (540/559), right kidney locations in 91% (498/557),
left kidney locations in 87% (466/553), and spleen locations in 75%
(421/559) of the CT scans have been detected correctly. Organ
detection completely failed (JSC = 0) in 5% (28/559) of the CT scans
for spleen localization, 5% (28/559) of the CT scans for right-kidney
localization, and in 6.6% (37/559) of the CT scans for left-kidney

detection. The average and the standard deviation of JSC values for
559 test CT scans are shown in Table 1. Fig. 8 shows the histogram of
Distc values. We  confirmed that the Distc values of the heart in 97%
(542/559) of CT scans, the liver in 74% (413/559) of CT scans, the
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Fig. 8. Histogram of 3D Euclidean distances between the center position of detected MBR  (minimum bounding rectangle) and manual inputted MBR of the 5 target organs
using  559 test CT cases.

Table 1
Statistic summary for the JSC value (%) between the localization result and ground truth in 559 testing CT cases.

Maximum Minimum Total 559 testing CT cases Only the CT cases with JSC > 50%

Average Standard deviation Average Standard deviation

Heart 94.2 49.1 72.5 8.4 72.6 8.2
Liver  96.3 29.9 72.2 10.9 73.2 8.7
Spleen 100 0 57.1 23.6 68.4 9.5
Left  kidney 93.4 0 64.1 22.9 73.0 8.7
Right  kidney 90.3 0 65.9 17.6 70.8 8.5
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Fig. 9. Localization results of the heart (a) and liver (b) that showed the worst accu-
racies (JSC) in the experiments. Green box indicates the detected organ location
(minimum bounding rectangle of the target organ). (For interpretation of the ref-
e
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each torso CT scan, and this time can be further reduced to about

F
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rences to color in figure caption, the reader is referred to the web  version of the
rticle.)

pleen in 85% (474/559) of CT scans, the left kidney in 86% (478/553)
f CT scans, and the right kidney in 92% (514/557) of CT scans were
istributed within 15 voxels. We  also applied the organ localization
lgorithm to the 101 training samples, and found that the perfor-

ance (JSC) was slightly better than those results obtained on the

est samples. A histogram of JSCs for the left and right kidney local-
zations on the training samples is shown in Fig. 10.  Considering
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ig. 10. Histogram of Jaccard similarity coefficient (JSC) between detected MBR  (minimum
sing  101 training CT scans.
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the large variation of the solid organs, this performance should be
acceptable to solve organ localization problems in CT scans. Specif-
ically, we  found that most solid organs with a normal appearance
in our database were localized successfully.

According to the assumption that the anatomical structures
in different patients are almost identical and that patients are
always centered in the images during the CT scan, there are some
arguments that organ location may  be simply estimated by using
a predefined atlas (average of organ locations in a number of
patients). Therefore, we  compared the localization results of our
approach with the ones from an atlas-based approach. The atlas
used in our experiments was  generated by averaging the center
positions of the ground truths (MBRs of five target organs) in 559
test CT scans after normalization based on a rigid registration (man-
ually rescaling and translating the MBR  of torso region in different
patients into a standard 3D-box that starts from the apex of the lung
region in an axial direction). By manually re-scaling and translating
this standard 3D-box to fit the torso region in an unknown CT scan
based on the same rigid registration method, the center positions
of the heart, liver, spleen, and left and right kidneys can be pre-
dicted by the atlas inside the 3D box. We  applied this atlas-based
approach to the same 559 CT scans used in our experiments. The
histogram of Distc values of heart, liver, spleen, and left and right
kidney localizations are shown in Fig. 11.  We  found that the errors
of estimated center positions of each target organ ranged from 0 to
55 voxels with an average of about 25 voxels. This result shows that
the organ locations in CT scans cannot be accurately predicted by a
predefined atlas. Using the same measure in as Fig. 8, we found that
the localizations resulting from the proposed approach are clearly
better than the results from the atlas-based approach.

In this experiment, we  only used non-contrast CT scans for
training. We  found that the obtained organ location detectors
also worked well for contrast-enhanced CT scans. There was no
apparent deterioration between the detection performance on
non-contrast and contrast-enhanced CT scans. We  believe this is
partially indebted to the adopted weak classifier based on Haar-
like features, which is insensitive to the contrast increase between
the target organ and the surrounding background.

The time required for organ localization was less than 15 s for
6 s by parallel computing using the 2D detectors all on a PC with a
quad-core CPU (Intel Core i7 975, 3.33 GHz) and 4 GB memory. The
algorithms were developed by using C++ under the CentOS 5.0.

 49 50 59 60 69 70 79 80 89 90 100
JSC

 bounding rectangle) and manual inputted MBR  of the left and right kidney regions
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liver, 25.42 mm  for the left kidney, and 44.52 mm for the right kid-
ney. Compared to [6],  our approach is much simpler and only needs
to use local features within the extent of the target organ. Consid-
ering that CT images do not always cover an extensive area of the
ig. 11. Histogram of 3D Euclidean distances between the center position of estima
 target organs using 559 test CT cases.

. Discussion

The major contribution of this paper is the use of ensemble
earning for 2D location detection along three different directions,
ollowed by the integration of the 2D detection results to esti-

ate the 3D organ location. We  only required the 2D detectors
o be “weak” detectors. Majority voting of multiple 2D candidates
rom three independent directions can combine all weak 2D detec-
ors into a “strong” 3D detector. AdaBoosting algorithm based on
aar-like features has been used for face detection with very high
ccuracy. However, in the proposed approach, each individual 2D
ocation detector had a very low detection accuracy. Based on our
xperiments on the 559 3D CT scans that were not used for training,
5% and 37% (for the left and right kidneys, respectively) of the 2D
ectangles detected in Step 2 of the algorithm described in Section
.3 are outliers. On the other hand, the 2D location detectors on
he corresponding slices did not find 65% and 79% (for left and right
idneys, respectively) of the ground-truth 2D MBRs. This is com-
letely reasonable since solid organs such as kidneys may  show
n inconsistent intensity and appearance in different 3D CT scans,
nd the contrast between the solid organ and surrounding back-
round is usually very poor. For such organ detection problems, our
pproach takes advantage of the redundancy among the 2D detec-
ion results drawn from different directions and applies a majority
oting technique to remove the outliers in the 2D detection results.

The motivation of using multiple 2D detectors instead of a
D detector was due to the large number of 3D training samples
equired for direct 3D detection, which are difficult to obtain. Par-
icularly, the organs (e.g., kidney) in clinical CT images may  be
bnormal, resulting in an irregular 3D appearance in part of this
rgan (refer to Fig. 12).  Therefore, we would need an even greater
umber of training samples to cover all possible appearance irregu-

arities in 3D. Our 2D approach addresses this problem by (1) having
 large number of 2D training samples, and (2) in abnormal cases,
etecting a partially normal appearance in 2D sections (good parts

n “rotten apple” as shown in Fig. 12((b)–(d)) and then deriving
he 3D bounding box (Fig. 12(a)) using such normal 2D sections.
nother benefit of 2D detections is that independent 2D detec-

ions are more flexible than 3D CT scans with different resolutions
long the axial body direction. By adjusting the resolution of the 2D
etecting windows, we  found that our approach could be applied
o CT scans with 2–5 (mm)  slice spacing in the axial direction to

dentify organ locations.

In related work, probabilistic boosting tree with 3D Haar-like
eatures has been used to detect heart location as the pre-
rocessing step for heart structure segmentation [3].  This method
BR  (minimum bounding rectangle) using an atlas and manual inputted MBR  of the

was  successfully trained and tested using 457 CT scans from 186
patient cases by a four-fold cross validation. To ensure that the
robustness and accuracy of detection can be maintained, this study
outputted 100 potential locations of a target organ as the final result
in a CT case. Our approach accomplishes the same detection task in
a lower-dimensional feature space (2D Haar-like feature). In addi-
tion, our approach uses a smaller number of training samples (101)
and was validated on a larger number (559) of untrained CT scans
under more stringent requirements that our approach indicated
the organ location itself exactly in a CT case. Recently, an approach
based on decision forests with a long-range spatial context has been
used for organ localization [6].  This approach was trained and tested
for 9-organ localization based on 39 CT scans, resulting in a mean
localization error (Distc) of 21.32 mm for the heart, 22.68 mm for the
Fig. 12. An example of left kidney localization result in an abnormal CT scan that did
not  appear in training samples. (a) Three slices that pass through the final detected
center position. (b)–(d) A part of 2D detection results in axial slices.
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Fig. 13. A 3D view of a left kidney segmentation result in a CT scan. Red: a 3D
ellipse that automatically arranged on the basis of kidney localization result. Green:
sample points of a left kidney surface that manually inputted by a medical expert.
(For interpretation of the references to color in figure caption, the reader is referred
t
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uman body, the use of our approach in clinical practice is more
ealistic. Additionally, our approach produces smaller localization
rrors (Distc) for such organ localizations in most CT scans.

The major application of organ localization is to help organ seg-
entation in CT images. We  conducted a preliminary investigation

o demonstrate the usefulness of the obtained localization results
or the respective organ segmentation. We  selected the left kidney
s the segmentation target, and put a 3D inscribed ellipse with a
xed orientation inside the detected 3D rectangle as an estimate
f the desired left kidney boundary. We  manually identify approxi-
ately 200–400 sample points on the boundaries of the left kidney

n 90 non-contrast CT scans (JSC > 50%) to evaluate accuracy. Fig. 13

hows a 3D view of an inscribed ellipse and sample points on a
eft kidney boundary in a CT scan. The minimum Euclidean dis-
ance Dists from each sample point to the ellipse were measured.

e  found that the average Dists value of all sample points were
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ig. 14. Relation between localization accuracy Jaccard similarity coefficient (JSC)
alues and segmentation accuracy Dists (average value of the minimum Euclidean
istance from a left kidney surface to a pre-arranged ellipse) values in 90 non-
ontrast CT scans.
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distributed from 6 to 23 voxels as shown in Fig. 14.  Obviously,
simple ellipses cannot cover the variations in kidney orientation
and shape from different patients; however, these results indicate
the potential usefulness of the organ localization for supporting
organ segmentation based on CT images. Further development in
the universal organ segmentation method will be done on the basis
of our localization approach in the future.

6. Conclusion

We  proposed a universal approach for automatic localization of
different solid organs on 3D CT scans. In this approach, we used a
collaborative majority voting decision based on 2D ensemble learn-
ing for quickly localizing the organs. This approach was applied to
a database that included 660 CT scans to localize the heart, liver,
spleen, and the left and right kidneys. We  performed experiments
to validate the efficiency and accuracy of this method. In the future,
we  plan to combine the proposed approach with a probabilistic
atlas-based approach [8] to provide a universal tool for segmenta-
tion of all the solid organs and for recognition of the anatomical
structures in 3D CT images.
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Appendix A. 2D Haar-like features [2]

We assume the basic unit for detecting an object is a window
of W × H pixels. A rectangle inside of the window is specified as
r = (x, y, w, h, a) with 0 < x, x + w < W,  0 < y, y + h < H, x, y > 0, w, h > 0,
and a = {0, 45◦}, where the x, y are the coordinates of the left-upper
position, w,  h is the size, and a is the rotation angle of the rectangle
(Fig. 3). Let us use RecSum(r) to denote the pixel sum of r. The 2D
Haar-like feature is defined as the set of all possible features of the
form

featureI =
∑

i ∈ I={1,···N}
wi × RecSum(ri),

where the weights wi ∈ �, the rectangles ri, and N are arbitrarily
chosen.

The feature set is almost infinitely large. For practical reasons, it
is reduced by some constraints (for example, only two  rectangles
were used, the weights have opposite signs, and weight values were
calculated based on the area of two rectangles) and condensed into
14 feature prototypes to show the edge, line, and center-surround
features that are closed to the human visual pathway. Further tech-
niques for generating the 2D Haar-like features can be found in Ref.
[2].

Appendix B. AdaBoosting algorithm [1]

We show the pseudo codes of AdaBoosting algorithm [1] that

used in this work for training a strong classifier. Each round of
boosting selects one feature from a feature pool.

1. Input training sample images (x1, y1),. . .,(xn, yn) where yi = 0, 1 for
indicating negative (background) and positive examples (target
organ), respectively.
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. Initialize weights w1,i = 1/(2m),  1/(2l) for yi = 0, 1, respectively,
where m and l are the number of negatives and positives, respec-
tively.

. For t = 1,. . .,  T:
- Normalize the weights, wt,i ← wt,i/

∑n
j=1wt,j.

- For each feature, j, train a classifier hj which is restricted to
using a single feature.

- The error is evaluated with respect to wt, εj =
∑

i

wi|hj(xi) − yi|.

- Select the classifier, ht, with the smaller error.
- Update the weights: wt+1, i = wt, iˇ

1−ei
t , where ei = 0 if example

xi is classified correctly, otherwise ei = 1, and ˇt = εt/(1 − εt).
. The final strong classifier is: h(x) ={

1
∑T

t=1˛tht(x) ≥ 1
2

∑T

t=1
˛t

0 otherwise
, where ˛t = log(1/ˇt).
ppendix C. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.compmedimag.2011.12.004.

[

ing and Graphics 36 (2012) 304– 313 313

References

1] Viola P, Jones MJ.  Rapid object detection using a boosted cascade of simple
features. Proc Intl Conf on Computer Vision and Pattern Recognition (CVPR)
2001:511–8.

2]  Lienhart R, Maydt J. An extended set of Haar-like features for rapid object detec-
tion. Proc Intl Conf on Image Processing (ICIP) 2002;1:900–3.

3] Zheng Y, Adrian B, Bogdan G, Michael S, Dorin C. Four-chamber heart modeling
and  automatic segmentation for 3-D cardiac CT volumes using marginal space
learning and steerable features. IEEE Trans Med  Imaging 2008;27:1668–81.

4] Ling H, Zhou SK, Zheng Y, Georgescu B, Suehling M,  Comaniciu D. Hierarchical,
learning-based automatic liver segmentation. Proc Intl Conf on Computer Vision
and Pattern Recognition (CVPR) 2008:1–8.

5] Dikmen M, Zhan Y, Zhou XS. Joint detection and localization of mul-
tiple anatomical landmarks through learning. Proc SPIE Medical Imaging
2008;6915:6915381–9.

6] Tu Z. Probabilistic boosting-tree: learning discriminative methods for classifica-
tion, recognition, and clustering. Proc Intl Conf on International Conference on
Computer Vision (ICCV) 2005:1589–96.

7] Criminisi A, Shotton J, Bucciarelli S. Decision forests with long-range spatial
context for organ localization in CT volumes. In: Proc on intl conf on medical
image computing and computer assisted intervention workshop on probabilistic

models for medical image analysis (MICCAI-PMMIA). 2009.

8] Zhou X, Kitagawa T, Hara T, Fujita H, Zhang X, Yokoyama R, et al. Constructing a
probabilistic model for automated liver region segmentation using non-contrast
X-ray torso CT images. Proc Intl Conf on Medical Image Computing and Computer
Assisted Intervention (MICCAI) 2006;4191:856–63.

http://dx.doi.org/10.1016/j.compmedimag.2011.12.004

	Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning
	1 Introduction
	2 Methods
	2.1 Overview of the proposed approach
	2.2 Training of the 2D location detectors
	2.3 Majority voting for final organ location estimation

	3 Experiments
	4 Results
	5 Discussion
	6 Conclusion
	Acknowledgments
	Appendix A 2D Haar-like features [2]
	Appendix B AdaBoosting algorithm [1]
	Appendix C Supplementary data
	References


