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Abstract 
 

Microaneurysm in the retina is one of the signs of 

simple diabetic retinopathy. We have been 

investigating a computerized method for the detection 

of microaneurysms on retinal fundus images. In this 

study, the computerized scheme was developed by 

using twenty five cases. After image preprocessing, 

candidate regions for microaneurysms were detected 

using a double-ring filter. Any potential false positives 

located in the regions corresponding to blood vessels 

were removed by automatic extraction of blood vessels 

from the images. One hundred twenty six image 

features were determined, and 28 components were 

selected by using principal component analysis, and 

the candidate lesions were classified into 

microaneurysms or false positives using the rule-based 

method and an artificial neural network. The true 

positive rate of the proposed method was 68% at 15 

false positives per image. 

 

1. Introduction 
 

In Japan, there are approximately 8.9 million 

patients with confirmed diabetes and approximately 

22.1 million patients with suspected diabetes. 

Approximately 3 million are thought to suffer from 

diabetic retinopathy (DR). This disease can be 

prevented from causing blindness if it is treated at an 

early stage. However, approximately 3,000 people 

have lost their vision following the onset of DR. The 

ophthalmologists diagnose DR by finding hemorrhages, 

microaneurysms, and exudates in retinal fundus images. 

The contrast of hemorrhages and microaneurysms are 

increased by using fluorescein angiograms. However, 

using fluorescein for diagnosing DR is not feasible in 

the case of mass screening. Thus it is desirable to 

detect hemorrhages and microaneurysms on retinal 

fundus images without using the contrast medium; 

however, detection of hemorrhages and 

microaneurysms is difficult because of their low 

contrast in noncontrast images. Therefore, a computer-

aided diagnosis (CAD) system for the detection of 

these lesions can help physicians who review the mass 

screening exams in diagnosing DR.  

Usher et al. reported a method for detecting 

hemorrhages, microaneurysms, and exudates by using 

adaptive intensity thresholding combined with an edge 

enhancement operation [1]. Niemeijer et al. proposed a 

method for the detection of red regions by pixel 

classification and feature analysis [2]. Grisan et al. 

proposed a method for detecting the dark lesions on the 

basis of local thresholding and pixel density [3]. 

Niemeijer et al. held the first international 

microaneurysm detection competition, organized in the 

context of the Retinopathy Online Challenge (ROC), a 

multiyear online competition for various aspects of DR 

detection [4]. Thus, several studies using ROC 

database were reported. Xu et al. reported a method for 

detecting microaneurysms based on mathematical 

morphological black top hat and their feature [5]. Their 

features extracted were classified by support vector 

machine. Zhang et al. proposed a microaneurysms 

detection method using multi-scale Gaussian 

correlation filtering and sparse representation classifier 

[6]. Antal et al. proposed a microaneurysms detection 

method based on ensemble using features [7]. We also 

proposed a method based on double ring filter in 

noncontrast images of the retinal fundus [8]. But, the 

previous method caused many false positives, thus the 

aim of the present study is to improve the previous 

method. 

 

2. Method 
 

ROC database were used in this study. For ROC 

competition, they compared the results of five different 

methods, produced by five different teams of 

researchers on the same set of data. The database 

includes 50 retinal fundus images with "gold standard" 

locations of microaneurysms identified by a consensus 

of four ophthalmologists; these cases were intended to 

be used as a training set for the development of CAD 

systems. The ROC also includes 50 testing cases in 

which "gold standard" locations are not provided to the 
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Table 1. True positive fractions (TPFs) and the numbers of false positives per image (FPI) after the 

initial detection process, false positive reduction using the rule-based method and ANN. 

 TPF of all microaneurysms TPF of visible microaneurysms FPI

Initial detection 0.487 (76 / 156) 0.699 (59 / 84) 173 (4315 / 25)

Reduction of false positives 0.397 (62 / 156) 0.682 (58 / 84) 15 (385 / 25)

Previous method [8] 0.417 (65 / 156) 0.682 (58 / 84) 26 (641 / 25) 

vessels. Lesions that were detected in the blood vessel 

regions were considered as false positives and removed 

from the candidates. 

 

2.4. Re-examination of candidate lesions 
 

The shapes of candidate lesions after the initial 

detection are affected by the structure of the double-

ring filter. Therefore, the shapes of candidate lesions 

were not determined accurately, which could influence 

the accuracy of image feature analysis. In order to 

determine the shapes of candidate lesions correctly, 

their shapes were re-examined. On the basis of the 

remaining candidate pixels after the removal of false 

positives, neighboring pixels with comparable pixel 

values were included in the candidate lesions.  

 

2.5. Feature determination and reduction of 

false positives 
 

The candidate lesions in the initial detection process 

included numerous false positives. Therefore, in order 

to remove the false positives, 126 image features were 

calculated. These features included (1) area, (2) degree 

of circularity, (3) length-to-width ratio [16], (4-6) mean 

value of the candidate lesion in each of the red, green, 

and blue bits, (7-9) difference between the maximum 

and minimum pixel values of the candidate lesion in 

each of the red, green, and blue bits, and (10-12) 

contrast, (13) similarity of BV, (14) number of labels 

in binarized image, (15) variance in pixel values, (16) 

nearest distance from BVs, (17) RMS(Root Mean 

Square), (18) 1st moment, (19, 20) ordinate and 

abscissa from optic disc, (21-23) values of double ring 

filter [10] in R, G, B values, (24-26) values of double 

ring filter A in R, G, B values, (27- 126) features based 

on texture analysis added in this study. 

In features (27-78), angular second moment, 

contrast, correlation, variance, inverse difference 

moment, sum average, sum variance, sum entropy, 

entropy, difference variance, difference entropy, and s 

kinds of information measure of correlation were 

calculated from co-occurrence matrix. In features (79-

86), angular second moment and mean were calculated 

from gray level difference statistics. In features (87-

126), short runs emphasis, long runs emphasis, gray 

level nonuniformity, run length nonuniformity, and run 

percentage were calculated from 0 and 90 degrees of 

run length matrixes.  

On the basis of these features, candidate lesions 

were classified as microaneurysms or false positives 

using the rule-based method and an ANN. For the 

ANN, 126 features were transformed to 28 components 

by principal component analysis (PCA). The ANN 

with a three-layered feed-forward network was learned 

by using a back-propagation algorithm. The number of 

hidden units was varied experimentally. For avoiding 

over-training of the ANN, the training was stopped at a 

certain iteration number. 

 

3. Results and discussion 
 

The proposed method was evaluated by use of the 

free-response receiver operating characteristic (FROC) 

analysis. The ROC database includes many 

microaneurysms that are very difficult to detect. 

Therefore, the visibilities of the microaneurysms used 

in this study were evaluated individually by the two 

researchers in this study. As a result, 84 out of 156 

microaneurysms, 54 percent of all, were determined 

invisible by both researchers. Therefore, for the 

training cases, the results of the poposed method were 

evaluated in two ways: the sensitivities were 

determined for all microaneurysms and for visible 

microaneurysms only. 

For evaluation of trained ANN, ANN was evaluated 

by using leaven one out cross validation in seventy six 

microaneurysms detected and 4315 false positives. The 

ANN's parameters were set when area under the curve 

(AUC) in receiver of characteristic (ROC) analysis was 

max. The true positive fractions (TPFs) and the number 

of false positives per image (FPI) by the initial 

detection, the classification by the ANN using 126 

features, and the previous method are summarized in 

Table 1. The TPFs for the 84 visible microaneurysms 

are also shown in Table 1. The results indicate that 

detection of microaneurysms in the images of the ROC 

database is very difficult. But, the proposed method 



was improved by reduction of false positives based on 

texture analysis. 

Figure 2 shows FROC curves obtained for all 

microaneurysms and only visible ones. It is apparent in 

Figure 2 that the sensitivity for detecting visible 

microaneurysms was considerably higher than that for 

"invisible" microaneurysms. Moreover, the proposed 

method was higher than the previous one slightly. 

False positives detected can be grouped into two 

major categories: (1) capillary blood vessels not to be 

identified as the blood vessels, and (2) noise regions. 

Because the accuracy of the extraction of blood vessels 

was insufficient, reduction of some false positives in 

the blood vessel regions failed. The accuracy of 

extraction of large blood vessels was relatively high, 

whereas it was low for the capillary blood vessels. In 

order to remove the false positives in the blood vessels, 

it is important to improve the accuracy of extraction of 

blood vessels. 
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Figure 2. FROC curves for all microaneurysms 

and only visible microaneurysms. 
 

4. Conclusion 
 

We investigated a method for the automated 

detection of microaneurysms on retinal fundus images. 

We applied our method on the 25 cases obtained from 

the ROC database; the sensitivity of our method was 

68% with the 15 false positives per image.  Although 

proposed method has several problems, our method 

could be improved further for the detection of visible 

microaneurysms in order to facilitate the early 

diagnosis of DR. 
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