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Abstract
Purpose Existing computer-aided detection schemes for
lung nodule detection require a large number of calculations
and tens of minutes per case; there is a large gap between
image acquisition time and nodule detection time. In this
study, we propose a fast detection scheme of lung nodule in
chest CT images using cylindrical nodule-enhancement filter
with the aim of improving the workflow for diagnosis in CT
examinations.
Methods Proposed detection scheme involves segmenta-
tion of the lung region, preprocessing, nodule enhancement,
further segmentation, and false-positive (FP) reduction. As
a nodule enhancement, our method employs a cylindrical
shape filter to reduce the number of calculations. False pos-
itives (FPs) in nodule candidates are reduced using support
vector machine and seven types of characteristic parameters.
Results The detection performance and speed were evaluated
experimentally using Lung Image Database Consortium pub-
licly available image database. A 5-fold cross-validation
result demonstrates that our method correctly detects 80 %
of nodules with 4.2 FPs per case, and detection speed of
proposed method is also 4–36 times faster than existing
methods.
Conclusion Detection performance and speed indicate that
our method may be useful for fast detection of lung nodules
in CT images.
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Abbreviations
CAD Computer-aided detection
CNEF Cylindrical nodule-enhancement filter
C-SVC C-support vector classification
CT Computed tomography
FROC Free-response receiver operating characteristic
GGO Ground glass opacity
LIDC Lung image database consortium
MIP Maximum intensity projection
PET Positron emission tomography
SVM Support vector machine

Introduction

Lung cancer is a serious public health problem in the United
States, Europe, and many other countries, as it is a leading
cause of death, in terms of cancer, for men and women. Detec-
tion and treatment at an early stage are required to effectively
overcome this burden. X-ray computed tomography (CT) has
recently been adopted as a mass-screening tool for lung can-
cer diagnosis [1], enabling a rapid improvement in the abil-
ity to detect tumors early. According to the results from the
National Lung Screening Trial [2], screening with low-dose
CT scans cuts lung cancer deaths by 20 %. A greater num-
ber of CT examinations are expected to be adopted for lung
screening in the future; however, CT scans generate a large
number of images that must be read by the radiologist, and
avoiding diagnostic reading errors is a pressing challenge.

Computer-aided detection (CAD) provides computer out-
put as a “second opinion” to assist radiologists in diagnosing
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various diseases from medical images. Many CAD methods
for lung nodule detection have been developed [3–12].

Yamamoto et al. [3] proposed an enhancement filter, the
Quoit Filter, that has large ring and disk filters. The filter
enhances the nodule by calculating the difference in the out-
put of the ring and disk filter. They also proposed a three-
dimensional (3D) extension. Lee et al. [4] used a template
matching technique to detect lung nodules in chest CT scans.
A genetic algorithm was designed to determine the target
position and to select a template image from the reference pat-
terns. The four reference templates were established accord-
ing to the gray-level values of 3D Gaussian distributions.
Li et al. [7] proposed three selective enhancement filters for
dots, lines, and planes, which can simultaneously enhance
objects of a specific shape and suppress other objects. They
blurred the CT image with a Gaussian kernel that matched
the size of the nodule to be detected before calculating the
eigenvalues of the Hessian matrix that were used for selec-
tive enhancement. They used multiple scales of the Gaussian
kernel to find a match with the nodule size.

Recent studies employ the publicly available testing data-
base provided by the Lung Image Database Consortium
(LIDC) to evaluate the detection performance of CAD
schemes [13–20]. Way and Sahiner et al. [13,14] proposed a
nodule detection scheme using a 3D active contour method.
Opfer et al [15] proposed a CAD scheme based on dis-
tance transformations for various thresholds and subsequent
crest line extraction. Golosio et al. [16] proposed the nodule
detection method using multi-threshold surface triangulation
approach. Messay et al. [17] employed a local contrast
enhancement filter that followed the nodule enhancement
method used for the chest radiographs [21]. Riccardi et al.
[18] developed CAD scheme using 3D radial transform,
scale space technique, and Zernike MIP classification. Cam-
arlinghi et al. [19] proposed combined nodule detection using
existing algorithms. Tan et al. [20] introduced nodule- and
vessel-enhancement filter in a nodule detection step, feature
selection, and classification methodology. These schemes
have a sensitivity of 70–80 % with a false positive (FP) per
case of less than 10. However, these methods require a large
number of calculations and tens of minutes per case. On the
other hand, current CT units have the capability of generating
lung volume images within 30 s per scan. There is a large gap
between image acquisition time and nodule detection time.

In this study, a fast CAD scheme for lung nodule detection
is investigated with the aim of reducing the above gap, and
improving the workflow for diagnosis in CT examinations.

In this paper, we propose a fast CAD scheme for lung
nodule detection in CT images. We employed a cylindri-
cal shape filter as a fast enhancement method for lung nod-
ules in 3 dimensions. FPs in nodule candidates are reduced
using support vector machine (SVM) together with seven
characteristic shape parameters. In the experiments, the
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Fig. 1 Flow chart for the detection of lung nodules from CT images

capability of our method is evaluated by using the LIDC data-
base. Detection performance and detection speed of the pro-
posed method are also compared to existing CAD schemes.

Methods

Overview

The scheme developed for lung nodule detection includes
several major steps: segmentation of the lung region, prepro-
cessing, nodule enhancement, further segmentation, and FP
reduction, as shown in Fig. 1. The segmentation of the lung
region is determined using lung CT images. Preprocessing
for the separation of the blood vessels and nodules is then
performed followed by nodule enhancement using the cylin-
drical shape filter. Finally, we classify the nodules based on
SVM using characteristic features.

Segmentation of lung region

In the first process of our CAD scheme, the lung region is
segmented automatically from CT images in order to pre-
vent FPs outside this region. We introduced three major con-
ventional steps as follows: (1) extraction of an initial lung
region by using thresholding based on the Hounsfield value
(cut-off = −400) (2). Removal of invalid voxels outside
the body (3). Filling the lack of blood vessels and lung nod-
ules using the mathematical morphology operation. Figure 2
shows images of each step in the lung region segmentation.

Nodule enhancement using cylindrical
nodule-enhancement filter

This is the essential technique for lung nodule detection.
However, 3D enhancement requires a large number of
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Fig. 2 Steps in the lung region segmentation. a Original image,
b image after thresholding has been applied (cut-off = −400), c image
after removal of pixels outside the lung, and d final output (white pixels)

of the lung region segmentation after performing mathematical mor-
phology filter

calculations, and the enhancement step makes up the greater
part of the total calculations in the CAD scheme. In this
paper, we propose a fast enhancement method named as a
cylindrical nodule-enhancement filter (CNEF).

The CNEF has a cylindrical shape of radius r1 and height
2r1 (Fig. 3).The output of the filter is calculated according to
the following equations,

c(x, y, z) = f (x, y, z)

− max
(xc,yc,zc∈KCNEF)

{
f (x − xc, y − yc, z − zc)

∣∣∣∣
x2

c + y2
c ≤ r2

1 and zc = ±r1
x2

c + y2
c = r2

1 and −r1 < zc < r1

}
, (1)

where f (x, y, z) is the input image, c(x, y, z) is the output
image, and KCNEF is the filter kernel of the CNEF.

The CNEF represents the difference between the value
of the centre voxel and the maximum value on the cylinder

2r1

f (x,y,z)

r1

Fig. 3 Structure of the cylindrical filter. The filter outputs the differ-
ence between the value of the pixel at the centre of the cylinder around
(x, y, z), f (x, y, z) and the maximum pixel value on the cylinder surface

surface (sidewall, top, and bottom lids). When blood vessels
penetrate the filter, the values of these two regions are iden-
tical, and the output of the filter decreases. In contrast, when
there is an isolated nodule within the cylinder, only the centre
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voxel has a high value, and the output of the filter increases.
Thus, the CNEF enhances the nodule selectively based on
the object shape.

The cylinder surface of CNEF can be divided into a side-
wall and two lids (top and bottom). Here, the maximum value
on the cylinder sidewall is equivalent to the maximum value
on the circle whose radius is r1 in a maximum intensity pro-
jection (MIP) image of slab width 2r1. This means that the
3D calculation for the cylinder sidewall is replaced by 2D
processing using a MIP image. It is note that only one of
MIP processing is required, while all voxels in one slice are
processed. The outputs of two lids are equal to the output
of morphological filter [22] that output the maximum value
in a circle with radius r1 at z = ±r1. After the maximum

values of the cylinder sidewall and lids are calculated, the
largest one is taken as the final output of the cylinder. In this
manner, the CNEF uses only three 2D images, so significant
reduction in the number of calculation is attained.

CNEF enhances nodules when nodule size is less than
filter size. However, if filter size is much larger than nod-
ule size, output of CNEF may decrease because filter kernel
contact with lung structures such as bronchus, blood vessels,
and lung wall. Therefore, filters of 2 sizes (diameter = 10–
20 mm) were applied to each voxel; the highest filter output
was automatically adopted as the final output.

In order to evaluate the performance of the filter, we
designed a 3D digital phantom, which includes simulated
spherical nodules with diameters of 6, 8, and 10 mm, and

(a) (b)

(c) 

Fig. 4 Digital phantom and detection result. a Volume-rendered image
of the phantom. b Slice images of the phantom. The digital phan-
tom consists of spherical nodules (diameters of 6, 8, and 10 mm) and
blood vessels (diameters of 2, 3, 4, and 5 mm). The blood vessels are

positioned at angles between 0 and 90◦ in relation to the X–Y slice image.
c Detection result of the nodule. Red regions indicate positions detected
as a nodule. The method detected all the nodules without detecting blood
vessels
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Fig. 5 Result of preprocessing. a Original image, and b image preprocessed by an erosion filter

blood vessels of diameters of 2, 3, 4, and 5 mm. The blood
vessels were positioned at angles between 0 and 90◦ in rela-
tion to the X–Y slice image. Figure 4 shows the images of
the digital phantom and detection result. The CNEF detected
all the nodules without detecting blood vessels, as shown in
Fig. 4c.

This result shows that the CNEF has the capability of nod-
ule detection with regard to the detection of simple structure
nodules and blood vessels.

Preprocessing for large CNEF

In this study, we employed two different filter sizes of CNEF.
When large size of filter is used, sensitivity falls for nod-
ules located close to the normal tissues such as blood vessels
because filter overlaps with them. In order to separate the
nodule from normal tissues, we introduced an erosion filter
[22] as a preprocessing step, which shrinks the image of the
blood vessels and nodules. Erosion filter is one kind of mor-
phological filter, it enlarges the gap among objects.

Figure 5 shows original and preprocessed images. In
Fig. 5b, the blood vessels have been shrunk; thus, the pre-
processing filter improves the isolation of the nodule from
the surrounding object. Furthermore, because the filter also
shrinks the nodule, we can detect nodules using a filter with a
smaller kernel. The use of a preprocessing filter thus reduces
the number of calculations required.

Here, erosion filter may erase small nodules. To avoid it,
this preprocessing is applied only when larger size of CNEF
(filter diameter = 20 mm) is used. The diameter of erosion
filter is set to 10 % of the filter diameter of CNEF.

False-positive reduction

Nodule candidates consist of true nodules and normal tissues
such as blood vessels. There were typically about 5 FPs in a
given slice image, and this number must be reduced to certain
level for this technique to be effective. In this study, FPs

(normal tissues) are distinguished from true positives (nod-
ules) by analyzing the characteristic shape features followed
by judgment using SVM. The procedure for FP reduction is
performed as follows.

Step 1: Calculation of characteristic shape parameters
First, we outline the seven characteristic shape
parameters. In every case except (iv) and (v), binary
images are used (nodule candidate region: 1; back-
ground: 0).

(i) Area (X–Y, X–Z , and Y –Z planes)
Cross-sectional areas at the centre of the
nodule candidate in the X–Y, X–Z , and
Y –Z planes.

(ii) Surface area
The contour of the nodule candidate is
determined in all slices belonging to the
nodule candidate; the product of the total
number of contour voxels and area of a sin-
gle plane of the voxel is defined as the sur-
face area.

(iii) Volume
The product of the total number of voxels
inside the nodule candidate and volume of
voxel is defined as the volume.

(iv) CT value
The CT value around the centre of the nod-
ule candidate is calculated.

(v) Convergence
Basically, the CT value around the nod-
ule is low; it increases from the surround-
ing area to the centre of nodule. In other
words, gradient vectors of the voxel values
around the nodule concentrate at the centre
(Fig. 6a). For normal tissue, such as blood
vessels, gradient vectors do not concentrate
at the centre (Fig. 6b). Thus, we employ the
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Fig. 6 Concentration of gradient vectors in a a nodule and b blood
vessel

convergence in order to evaluate the con-
centration of voxel values [23].
To calculate this feature, the change in CT
value of each point in the original image F
in the x, y, and z directions was calculated
as the gradient vector.

%G = (Gx , G y, Gz) (2)

Gx = dF
dx

, G y = dF
dy

, Gz = dF
dz

(3)

Consequently, the inner product of the gra-
dient vector in voxel value and the vector
to the nodule centre at each voxel is calcu-
lated. The summation of such inner prod-
ucts is then defined as the convergence.

convergence =
∑

R

%G · %C (4)

%C : Vector to the nodule center at each voxel.
R: Euclidean space

(vi) Diameter
When the diameters of the nodule and blood
vessel are compared in the same volume, the
former has a larger value. Thus, we intro-
duced the diameter as a characteristic shape
feature. The diameter is calculated in 3D;
the minimum length of the segment that
intersects the centre of a nodule candidate
and has endpoints on the surface of the nod-
ule candidate is defined as the diameter.

(vii) Overlapping area
Blood vessels exist throughout the lung
region; however, nodules are usually iso-
lated. To enhance this feature, a fixed sphere
is placed at the centre of a nodule candi-
date; the ratio of the number of voxels that
overlap the spherical surface and the nod-
ule candidate to the number of voxels of

the spherical surface is counted as the over-
lapping area (see Fig. 7). Regarding to the
diameter of fixed sphere, we used 30 mm in
the evaluation.

Step 2: Classification using SVM
To reduce the FP candidates using the seven charac-
teristic shape features, we adopted the SVM algo-
rithm [24,25], which is a type of learning machine
based on statistical learning theory. SVM performs
classification by constructing an N -dimensional
hyperplane that optimally separates the data into
two categories.
Practically, the input for the SVM is the seven char-
acteristic values, and a judgment result is obtained
from the output. Since SVM is a learning type clas-
sifier, it is trained using a large amount of data in
advance. Here, the C-support vector classification
(C-SVC) technique was used; the third polynomial
function was used as the kernel function.

Experiments

In this section, the proposed method is evaluated to determine
the effectiveness of the method. Firstly, the overall perfor-
mance using the LIDC database is presented. The evaluation
results for detection performance and calculation speed are
then compared to existing methods.

Evaluation methods

In order to verify the performance of our proposed scheme,
we performed an evaluation using chest CT images that were
provided by the LIDC [26–28]. Since LIDC images were
collected from several different institutions, spatial resolu-
tion and X-ray imaging parameters differed (slice intervals,
0.625–3.0 mm; in-plane resolution, 0.488–0.946 mm; tube
voltage, 120–140 kV; and tube current, 40–499 mA).

In this study, we focused on nodules 5–20 mm in diam-
eter, which at least one doctor among four pointed out as a
nodule. We chose 84 cases from the LIDC database, which
comprised a total of 103 nodules.

When the radiologists identified the nodule locations in
each CT scan, they provided descriptors of the nodule char-
acteristics such as likelihood of malignancy and subtlety. The
number of radiologists that identify each nodule is valuable
information for the evaluation of CAD. Thus, we introduced
a characteristic called “agreement level” [17]. Nodules with
an agreement level j represent nodules, which are marked
by at least j of the 4 radiologists (where j = 1, 2, 3, 4).

Since detection performance may depend on the char-
acteristics of malignancy, subtlety, and agreement level,
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Fig. 7 Illustration for
determining the overlapping
area. a The blood vessel has a
continuous structure and
overlaps the fixed sphere.
b When nodule is isolated and
so no overlap occurs

Table 1 Number of nodules listed by agreement level, subtlety, and
malignancy

Category

1 2 3 4 5

Agreement level 103 84 64 33 –

Subtlety 4 15 25 34 25

Malignancy 2 22 57 16 6

we evaluated the detection performance by categorizing the
nodules according to above three parameters. The numbers
of nodules are listed in Table 1.

Regarding the detection parameters of the CNEF, we
employed radii r1 of 5–10 mm; a higher output was assumed
to be the output value of each voxel. Erosion operation with
a radius of 0.5 mm was applied for the former CNEF, and
erosion with a radius of 1.0 mm was used for the latter one.

Nodule candidates obtained by the CNEF were classified
into two classes using the SVM classifier aided by the char-
acteristic shape features. In this experiment, we utilized the
LIBSVM software library (version 2.71) [29]; C-SVC with
the kernel of the 3rd polynomial function was introduced.
These parameters were decided in a heuristic manner.

The nodule detection performance was evaluated by
a so-called free-response receiver operating characteristic
(FROC) curve. Slice images in each case were given, and
sensitivity and FPs per case values were obtained. Here, sen-
sitivity is defined as the ratio of the number of detected true
nodules to the number of true nodules in the database and
is expressed as a percentage. FP/case is defined as the ratio
of the number of FPs to the number of cases employed for
evaluation. Furthermore, the data of nodule candidates were
randomly divided into five datasets; an evaluation by the
cross-validation method was carried out.

Evaluation results

Figure 8 indicates the enhanced results by using CNEF. Filter
output showed high value on the nodules, whereas most of the
blood vessels had low values. Some small dots (indicated by
black arrows) are shown in the enhanced images. They corre-
spond to FPs being expected to be eliminated by FP reduction
technique. Figure 9 shows the eliminated regions by using FP
reduction technique. Most of the FPs were seen at the bifurca-
tion of the blood vessels. These FPs were eliminated by SVM
with characteristic features. Table 2 shows the characteristic
features of nodules and FPs. In some results, characteristic
features had significant difference between nodules and FPs.
In other cases, SVM judged correctly using multiple features.

FROC curves of our proposed method are shown in
Fig. 10.The solid line in the figure represents the FROC curve
when FP reduction is disabled. The dashed line represents the
curve when FP reduction is employed. Using the FP reduc-
tion method, FPs were reduced to about 20 %. The proposed
method is able to detect 80 % of all nodules in the data set
with 4.2 FPs per case.

Figure 11 presents multiple FROC curves classified
according to subtlety ratings. Subtlety ratings were merged
into three classes. Obvious nodules (subtlety = 4 and 5) are
detected at a sensitivity of 90 % with 4.2 FPs per case. On
the other hand, the sensitivity of subtle nodules (subtlety = 1
and 2) is less than 50 %.

FROC curves classified according to the likelihood of
malignancy are shown in Fig. 12. The sensitivity reached
95 % for nodules with a high malignancy rate (malignancy
= 4 and 5). For nodules with a low malignancy rate (malig-
nancy = 1 and 2), sensitivities were about 20 % lower than
those of the high malignancy rate.

Figure 13 shows multiple FROC curves according to
agreement level. Overall, the sensitivity of nodules with an
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(a) 

(b) 

(c) 

Fig. 8 Nodule enhanced results using proposed CNEF. Left and right images are original and nodule-enhanced images, respectively. White and
black arrows indicate the nodules and FPs, respectively
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Fig. 9 Eliminated regions by using FP reduction method. Eliminated regions are located in the centre of these images

Table 2 Examples of characteristic features of nodules (Fig. 8) and FPs (Fig. 9)

Area (mm2) Volume
(mm3)

Surface
area
(mm2)

CT
value
(H.U.)

Convergence Diameter
( mm)

Overlapping
area (%)

X–Y X–Z Y–Z

Nodule Fig. 8a 208.6 241.0 214.3 2432.4 1249.8 78 1.00 13.3 0.8

Nodule Fig. 8b 114.6 74.5 63.5 1509.7 1818.3 101 0.98 3.0 24.7

Nodule Fig. 8c 159.2 194.0 131.8 2064.2 2233.1 −41 0.99 5.5 14.4

FP Fig. 9a 151.1 157.9 70.6 1977.7 2081.5 −61 0.90 4.1 29.7

FP Fig. 9b 103.0 39.2 55.4 1112.3 1287.5 −171 0.88 3.2 14.4

FP Fig. 9c 85.7 87.8 55.9 961.1 1075.8 11 0.90 4.3 7.4

Fig. 10 FROC curves of the proposed method

Fig. 11 FROC curves classified according to subtlety ratings. Obvi-
ous nodules are detected at a sensitivity of 90 % with 4.2 FPs per case.
On the other hand, the sensitivity of subtle nodules is less than 50 %

agreement level of 4 was 10 % better than that with the level
of 1.

Most obvious and malignant nodules were solid nodules
with high contrast and a clear outline. The majority of nod-
ules with low subtlety or malignancy were classified into a
ground glass opacity (GGO) nodule that has low contrast.
The above results indicate that the proposed method has the
highest sensitivity for a nodule with a clear outline and high
contrast. On the other hand, there is a need to improve the
sensitivity for GGO nodules.

As for the effectiveness of preprocessing (erosion filter),
we compared with and without preprocessing. Under the
same FP rate (4.0/case), sensitivity of without preprocess-
ing was 59.2 %, whereas with preprocessing was 80.0 %. The
nodule shown in Fig. 5 is one undetected solely by the filter,
but detected with preprocessing. These results indicate that
preprocessing works well in our CAD scheme.

Figure 14 shows examples of the detection results for nod-
ules that were detected correctly with 4.2 FPs per case and a
sensitivity of 80 %. Isolated nodules were detected correctly,
while blood vessels that had a continuous shape were cor-
rectly not detected. On the other hand, Fig. 15 shows nodules
that remained undetected. The main reasons for misdetection
were (1) insufficient contrast of the nodule and (2) nodules
adhered to the thoracic wall or blood vessel. Among the nod-
ules that adhered to the thoracic wall, nodules were detected
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Fig. 12 FROC curves classified according to likelihood of malignancy.
A high detection rate was obtained for nodules with high malignancy
rates

Fig. 13 FROC curves classified according to agreement level. The sen-
sitivity of nodules with an agreement level of 4 was 10 % better than
that with an agreement level of 1. 87 % of nodules with an agreement
level of 4 are detected at 4.2 FPs per case

correctly when they were incorporated into lung region at
the lung segmentation process. However, nodules outside
lung region were missed. We plan to improve the detec-
tion capability for such cases by including other detection
methods.

Comparison with existing methods

We also compared the detection capability and speed with
those of existing methods. We selected 7 CAD schemes
that show detection capability using the LIDC database or
reported detection speed. Although it is difficult to compare
because detection performance depends on image datasets
(e.g., number of cases, target nodule size, scanning proto-
col) and detection parameters, it is still important to attempt
making relative comparison. The summary of comparison is
shown in Table 3.The performance of our method is similar to
or better than the existing methods. As mentioned in Section
Experiments, LIDC images were collected from several dif-
ferent institutions, and the quality of the CT images differed
among institutions. Therefore, the evaluation of the detec-
tion performance using LIDC was much more challenging
than evaluation performed for images acquired from a sin-

gle institution. Sensitivity and FP/case in our method were
preferable despite the challenges.

The detection speed for our method, including FP reduc-
tion, is 25–34 s per case using a 2.8 GHz personal computer.
This is 4–36 times faster than existing methods. The detec-
tion speed of our method is equivalent to or faster than the
image acquisition time of a CT unit.

With regard to filter shape, some CAD schemes intro-
duced a spherical filter [3,30]. Spherical filters enable isotro-
pic processing. However, they require many calculations. In
our method, the spherical filter was replaced with a cylindri-
cal shape filter in order to reduce the number of calculations.
Experimental results showed that the detection performance
was the same as with conventional methods. Since the cur-
rent scan parameter of slice pitch for lung cancer screening
is wider (5–10 mm), image information is poorer in the z
direction than in the x and y directions. Therefore, CNEF is
a convenient nodule-enhancement filter for cancer screening
conditions from the point of view of both detection perfor-
mance and calculation time.

Conclusions

In this study, we have proposed a novel filter to increase the
calculation speed of 3D nodule detection in chest CT images.
The proposed method introduces a cylindrical shape filter as
a nodule enhancement. This filter shape remarkably reduces
the number of calculations. Furthermore, we introduced a FP
reduction method using seven characteristic shape features
and SVM.

In the experiments, the overall performance using the
LIDC database was evaluated. We demonstrated that pro-
posed method was able to detect 80 % of all nodules in
the data set with 4.2 FPs per case. This result shows that,
compared with existing methods, our method performs at
a similar or better level. As for the detection speed, our
method is 4–36 times faster than existing methods and equiv-
alent to or faster than the image acquisition speed of a CT
unit.

Reducing the gap between image acquisition time and
nodule detection time means that we will have the capa-
bility to perform additional examinations, such as high-res-
olution scanning, while keeping the patient on the bed of
the CT unit. Therefore, our proposed method may be use-
ful in clinical practice for nodule detection in chest CT
images.

Our future research will focus on improving the detection
rate. Most undetected nodules were GGO or part-solid nod-
ules that were attached to or close to the lung wall or blood
vessels. We plan to improve the detection capability for such
cases by including other detection methods.
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Fig. 14 Nodule images detected by the CAD scheme with 4.2 FPs per case and a sensitivity of 80 %. The nodules detected by the proposed method
are located in the centre of the images

Table 3 Performance comparison of proposed method with existing methods

CAD system Image
database

Number
of cases

Number
of nodules

Agreement
level

Sensitivity
(%)

FPs/case Detection
time
(seconds)

Way et al. and Sahiner et al. [13,14] LIDC 48 73 1 79.0 4.9 –

Opfer and Wiemker [15] LIDC – 127 1 76.0 4.0 180–300

Golosio et al. [16] LIDC 84 148 1 45.0 4.0 –

Messey et al. [17] LIDC 84 143 1 82.5 4.0 135–165

Riccardi et al. [18] LIDC 154 387 1 49.0 4.0 –

Chamarlinghi et al. [19] LIDC 138 252 2 80.0 4.0 –

Tan et al. [20] LIDC 125 259 1 66.4 3.0 –

Proposed method LIDC 84 103 1 80.0 4.2 25–34
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Fig. 15 Nodules that remained undetected in the CAD scheme. The nodule is located in the centre of the image. a–c Nodules touching or close to
the lung wall. d–f Nodules touching or close to the blood vessels. g–i Nodules with low contrast

Recently, some hospitals have begun to apply PET/CT
examinations to cancer screening. We plan to introduce this
method to the CAD scheme for PET/CT images.

Conflict of interest None.
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