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ABSTRACT 

This paper describes an approach to accomplish the fast and automatic localization of the different inner organ regions 
on 3D CT scans. The proposed approach combines object detections and the majority voting technique to achieve the 
robust and quick organ localization. The basic idea of proposed method is to detect a number of 2D partial appearances 
of a 3D target region on CT images from multiple body directions, on multiple image scales, by using multiple feature 
spaces, and vote all the 2D detecting results back to the 3D image space to statistically decide one 3D bounding rectangle 
of the target organ. Ensemble learning was used to train the multiple 2D detectors based on template matching on local 
binary patterns and Haar-like feature spaces. A collaborative voting was used to decide the corner coordinates of the 3D 
bounding rectangle of the target organ region based on the coordinate histograms from detection results in three body 
directions. Since the architecture of the proposed method (multiple independent detections connected to a majority 
voting) naturally fits the parallel computing paradigm and multi-core CPU hardware, the proposed algorithm was easy to 
achieve a high computational efficiently for the organ localizations on a whole body CT scan by using general-purpose 
computers. We applied this approach to localization of 12 kinds of major organ regions independently on 1,300 torso CT 
scans. In our experiments, we randomly selected 300 CT scans (with human indicated organ and tissue locations) for 
training, and then, applied the proposed approach with the training results to localize each of the target regions on the 
other 1,000 CT scans for the performance testing. The experimental results showed the possibility of the proposed 
approach to automatically locate different kinds of organs on the whole body CT scans. 

Keywords: Torso CT images, Organ localization, Object detection, Majority voting, Haar-like feature, Local binary 
patterns.  

1. INTRODUCTION 
CT imaging has been widely used in the clinical medicine to support diagnosis, surgery and therapy. Effective image 
analysis algorithms and software tools can substantially help doctors to increase efficiency and accuracy, reduce tedium 
and oversights during the CT image interpretations. Accurately and efficiently detecting the location of an object of 
interest (an organ, a lesion, etc) plays an important role in the automated CT image analysis. The detected object location 
is usually in the form of a closed surface that bounds the object of interest. If we require the closed surface to be exactly 
aligned with the object boundary, the problem of object location detection is reduced to the challenging problem of 
image segmentation. In this paper, we focus on the object location detection by finding the 3D minimum bounding 
rectangle (with six faces parallel to the x-y, y-z, and z-x planes respectively) that tightly covers the object of interest. 
Such a 3D rectangle not only describes certain geometry properties of the object of interest, but also reduces the search 
space and difficulty for further image segmentation. 
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Ensemble learning, such as AdaBoosting, has been successfully used for solving object detection problems in many 
computer-vision applications [1,2]. It has also been used for 3D CT image analysis, including heart structure recognition 
[3], liver segmentation [4], and anatomical landmark detection [5]. Recently, decision forests have been used 
successfully for detecting the inner organs in CT images [6]. All of those works reported good performance and 
demonstrated potentials of using ensemble learning for organ segmentation and localization in CT images. However, 
classical ensemble learning requires a large number of samples for training and testing. Especially, 3D CT images have a 
high feature dimension and we need a large number of training images to avoid the over-learning problem. In practice, it 
is difficult to collect a number of labeled 3D CT scans for satisfying this requirement. For example, as far as we know, 
few previous works reported performances on more than 1,000 CT scans and showed the possibility of the proposed 
algorithm for the localization of all the major organs in human torso from 3D CT images. 

In this paper, we propose an approach to detect inner organ locations on 3D CT images based on ensemble-learning 
with a majority voting method. This approach is aimed to solve the different kinds of inner organ detection problems 
generally and can handle real clinical images generated by the different CT scanners, including non-contrast and 
contrast-enhanced, normal and abnormal cases. Our purpose is to achieve robust and automatic organ localization by 
using only a small size of training data. 

2. METHODS 
2.1 Outline 

The process flow of the proposed approach is shown in Fig.1. In this paper, we handle the location detection of different 
inner organs separately and independently. Our method is to treat 3D organ localization in a 3D CT volume as detecting 
several independent 2D objects in a series of 2D image slices [7,8]. Obviously, this solution can reduce the feature 
dimension (3D to 2D) and increase the number of training samples (one 3D training sample consists of a large number of 
2D training samples) during the ensemble learning. This can increase the detection robustness according to Occam's 
razor. For an unseen 3D CT scan, our method applies different 2D detectors to each voxel independently to detect a 
number of 2D candidates of a target and votes those 2D candidates back to the 3D space. Finally, our algorithm judges 
the existence of the target by checking the mutual consent of the responses from all 2D detectors; selecting the location-
majority of the related 2D candidates in the 3D voting space as the final target location. 

The location of an inner organ is defined by a ground-truth 3D minimum bounding rectangle (MBR) that covers all the 
voxels in the target organ region, where the MBR is aligned with the x, y and z-axes, i.e., its six faces are parallel to x-y, 
y-z and z-x planes, respectively. The 3D MBR of an organ can be uniquely described by two corners Pmin=(xmin,ymin,zmin)t 
and Pmax=(xmax,ymax,zmax)t. The xmax, ymax, zmax, xmin, ymin, zmin are the maximum and the minimum coordinates of all the 

 
Fig.1. Process flow for localizing a target organ on a 3D CT scan (*MBR: minimum bounding rectangle). 
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voxels in the organ region along the sagittal, coronal and axial body directions [7]. In this way, the problem of detecting 
the location of an inner organ is reduced to a problem of finding the two MBR corners Pmin and Pmax. 

Instead of directly finding Pmin and Pmax for the 3D MBR, we try to find three 2D MBRs, which are the projections of 
the 3D MBR onto x-y, y-z and z-x planes, respectively [8]. The 2D MBR Rz on the x-y plane, defined by two corners 
Pz

min=(xmin,ymin)t and Pz
max=(xmax,ymax)t; the 2D MBR Rx on the y-z plane, defined by two corners Px

min=(ymin,zmin)t and 
Px

max=(ymax,zmax)t; and the 2D MBR Ry on the z-x plane, defined by two corners Py
min=(zmin,xmin)t and Py

max=(zmax,xmax)t. As 
shown in Fig.2, we train three 2D location detectors for finding a number of candidates of 2D MBRs Rx, Ry, Rz 
independently on each sagittal-, coronal-, and axial-direction slice of a 3D CT scan. Finally, the corners of the detected 
2D bounding rectangles are back-projected to the 3D space and voted for estimating the underlying 3D MDR 

2.2   Training 2D detectors by ensemble learning  

An inner organ region in a 3D CT scan is constructed by a series of consecutive 2D slices along a given direction (x, y or 
z). The appearance of an organ in each 2D slice is highly correlated and similar to its neighbor slices. Our basic 
assumption is that the appearances of an inner organ on 2D slices along the same direction are similar and could be 
recognized by a single 2D detector. Here, we only require a “weak” 2D detector that can output a part of 2D slices of the 
target organ region (low true positive rate) and allow a lot number of false positive (FP). This is exactly the strength of 
traditional ensemble learning approach. Because the 2D detection results have a very high redundancy to show the 3D 
organ locations, the later majority voting can further reduce FP rate without the accuracy-loss during the final decision. 

We take the 2D slices from the 3D training CT scans (with the manually labeled ground-truth 3D MBRs) for training 
the 2D organ-location detectors. Specifically, the slices along the sagittal, coronal, and axial directions are used for 
training the detectors for finding the candidates of 2D MBRs Rx, Ry, Rz, respectively as shown in Fig.2. Without loss of 
generality, in the following we focus on describing the training algorithm for finding the candidates of 2D MBR Rz. We 
collect the slices of the 3D training images along the axial body direction. If a slice intersects the ground-truth 3D MBR, 
we further check the 2D bounding rectangle resulting from this intersection. If the corseted target-organ in this slice is 
representative, i.e., the target-organ pixels count for a high percentage of the area of the 2D bounding rectangle, we crop 
this slice by this 2D bounding rectangle and then take the cropped slice as a positive 2D training sample. We randomly 
select a set of training slices cropped by rectangles that has no overlap with the ground-truth MBR as the negative 2D 
training samples. We then apply a cascaded AdaBoosting algorithm [9], using 2D Haar-like features [2] and local binary 
patters[10], to train the 2D target-organ location detector that can be applied to other axial-direction CT slices for finding 
the candidates of 2D MBR Rz. In the same way, we can train 2D detectors for finding the candidates of 2D MBRs Rx and 
Ry using the slices along the coronal and sagittal directions. 

2.3 Localizing a target organ in a 3D CT scan by majority voting 

Given an unseen 3D CT scan, we first apply the trained three 2D location detectors on all the slices along the three 
directions respectively to find out the possible existence of a target organ by using a sliding-window. Each location in the 
CT scan will be checked three times, i.e., along axial, coronal and sagittal directions, respectively, and only the locations 
that passed three examinations are regarded as the candidates of the target location. Ideally, 2D bounding rectangles 
detected from different slices provide consistent values of xmin, ymin, zmin, xmax, ymax, zmax, from which we can derive the 3D 
MBR. In practice, however, detected 2D rectangles may not lead to consistent values of xmin, ymin, zmin, xmax, ymax, zmax 
because of various noise and detection errors. We propose to use a majority-voting technique [8] to achieve an optimal 
estimate of the values of xmin, ymin, zmin, xmax, ymax, zmax (Fig.2). The detailed algorithm consists of the following steps: 

1. Given an input test 3D CT scan A, we construct an all-zero output 3D image B, which is of the same size as A.  

2. For each slice along the sagittal, coronal, or axial direction in A, we use the corresponding 2D target-location detector 
to detect 2D bounding rectangles. Note that no limit is set for the number of 2D rectangles detected on each slice. 

3. Loop over all the 2D rectangles detected in Step 2. Whenever a voxel in A is covered by a rectangle, we increment the 
intensity value (votes) of the corresponding voxel in the output image B by 1.  
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4. The voxel intensity in the output image B takes a vote value of 0, 1, 2, or 3. A voxel intensity of 3 at B indicates that 
this voxel is located in the detected 2D rectangles along both sagittal, coronal, and axial directions and the corresponding 
voxel in A shows a strong likeliness to be covered by the desirable 3D MBR. We find the 3D connected components 
based only on the voxels with intensity 3 in B and then select the 3D connected components with the largest volume as 
the candidates for target. If no voxel in B has intensity 3, algorithm is terminated with no target detected, i.e., the target is 
not involved in this 3D CT scan or may have been removed by surgery.  

5. For the selected 3D connected component, we find its gravity center by averaging all the involved voxels (with 
intensity 3 in image B). Find the voxel Vc closest to this gravity center. Now we use all the voxels with nonzero intensity 
in B to find the connected component that contains the voxel Vc. 

6. The voxels with nonzero intensity in B, but not included in the connected component found in Step 5, are treated as 
outliers. All the 2D rectangles detected in Step 2 that cover the outlier voxels are discarded. 

7. For the remaining 2D rectangles, we check their xmin, ymin, zmin, xmax, ymax, zmax coordinates and construct a histogram for 
each one of these six coordinates (Fig.2). For example, the histogram Hist(x) for xmin describes the number of occurrence 
of each possible xmin used in the remaining 2D rectangle (Rz and Ry along two directions).  

8. Smooth these six histogram functions by triangular windowing and then pick the optimal xmin, ymin, zmin, xmax, ymax, zmax 
which maximize their respective histogram functions. These optimal xmin, ymin, zmin, xmax, ymax, zmax defines a 3D rectangle, 
which we use as the final estimate of the underlying 3D MBR and provides a location detection of the target organ in this 
3D CT scan, as illustrated in Fig. 2. 

3. EXPERIMENT AND RESULTS 
A dataset including 1,300 cases of 3D volumetric CT scans was used in this experiment. These CT scans were collected 
in Gifu University Hospital by two kinds of multi-slice CT scanners (LightSpeed Ultra16 of GE Healthcare and 
Brilliance 64 of Philips Medical Systems). Each CT scan used a common protocol (120 kV/Auto mA) and covered the 
entire human torso region. Each 3D CT scan has approximately 800-1200 axial CT slices by an isotopic spatial 
resolution of approximately 0.6-0.7 mm and a density (CT number) resolution of 12 bits. A part of CT cases were 

 
 

Fig.2. Majority voting based on n-slice-detection redundancy for 3D organ localization. 
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scanned with the contrast enhancements. The age of these patients ranges from 25 to 92 years old. All of these CT 
images are taken for the patients with certain real or suspicious abnormalities.  

Twelve major organs including heart, liver, spleen, pancreas, stomach, bladder, left and right lungs, left and right 
kidneys, left and right femur-heads were selected as the detection targets for evaluating the performance of the proposed 
approach. The 3D MBRs (Pmin, Pmax) of those targets in each 3D CT scan were manually marked by the authors as the 
ground-truth. 300 non-contrast 3D CT scans were randomly selected for training. This leads to about 4,000-10,000 
positive 2D training samples and 40,000-100,000 negative 2D training samples that were used to train the 2D location 
detectors for those organs along each of the sagittal, coronal, and axial directions. The detectors for each organ were 
trained separately and independently. Each 2D location detector consisted of 15-20 cascades and each stage in the 
cascades was a classifier by combining (boosting) 5-100 weak classifiers. 

The proposed approach was applied to localize 12 target organs in 1,000 3D CT scans in the dataset independently. 
Those CT scans were test samples and not used for training. Accuracy of the organ localization was first carried out by a 
subjective evaluation by authors (including an anatomist and a radiologist), and then, we randomly selected a number of 
samples for quantitative evaluations. The ground truth 3D MBRs of each target organ were manually labeled by authors, 
and the volume-center-distance Distc and volume-variance-ratio Volvr that defined as the value of (1-(volume of 
detected MBR)/(volume of ground-truth MBR)) between the detected 3D rectangle and ground-truth MBR are used as 
the evaluation measures. An example of the detected organs in a 3D CT scan is shown in Fig.3, The histograms of Distc 
and Volvr for these target organs are shown in Fig.4. The computing time for detecting a target organ location was less 
than 15 seconds per CT scan by using a general purpose computer equipped with an Intel Core2Due 2.23 GHz CPU.  

4. DISCUSSION AND CONCLUSION 
In this study, the detected location was considered to be correct if the majority parts of detected 3D rectangle and the 
ground-truth MBR overlap with each other. Our subjective evaluation based on 1,000 test CT cases showed that the heart 
location in 983 cases, liver location in 978 cases, stomach location in 952 cases, pancreas location in 943 cases, spleen 
location in 932 cases, left kidney localization in 963 cases, right kidney localization in 969 cases, left lung location in 
992 cases, right lung location in 988 cases, bladder location in 984 cases, right-femur-head location in 578 cases, and 
left-femur-head location in 551 cases were correct. Those results showed that the proposed approach can accomplish the 
localization tasks in over 94% CT cases except for the femur-heads. The failure of the femur-head locations was due to 
the poor performance of the trained 2D detectors. This problem was caused by the smaller sample number and less 
texture information of the femur-head region in contrast to the other organs during the training stage.   

 
Fig.3. An example of the localization results for 12 kinds of major organs in a 3D CT scan. Three slices that pass through the 
detected center position of the target organ are shown. The rectangle indicates the detected organ location (bounding rectangle of the 
left-lung, heart, right-lung, liver, stomach, pancreas, spleen, left-kidney, right-kidney, right-femur-head, bladder, and left-femur-
head from the left to right sides). 
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For the quantitative evaluation as shown in Fig.4, Distcs of the target organs were less than 50 voxels in most CT 
cases with the modes ranged from 10 to 20 voxels. The histograms of Volvr of the most organs were distributed mostly 
between -20% and 20% with the modes around zero except for the bladder and liver.  This evaluation result showed that 
the proposed approach can find the center position approximately and determine the size of the bounding rectangle of the 
target organ regions. However, in the cases that the target organ has a large variance in the volume (bladder) or 
unsymmetrical shape (liver), the accuracy of the detected bounding rectangle needs to be improved.   

The major contribution of this paper is the use of the ensemble learning for the 2D location detection along three 
different directions, and then the integration of the 2D detection results to estimate the desirable 3D organ location. The 
proposed approach only requires the 2D detectors to be “weak” detectors. Majority voting of multiple 2D candidates 
from three independent directions will combine all 2D weak detectors into a 3D “strong” detector. AdaBoosting 
algorithm based on Haar-like features and local binary patterns has been used for face detection with very high accuracy. 
However, in the proposed approach, each individual 2D location detector leads to very low detection accuracy. Based on 
our experiments on the 300 3D CT scans that were used for training, more than 50% of the 2D rectangles detected in the 
Step 2 of the algorithm described in Section 2.3 were outliers. On the other hand, less than 50% of the ground-truth 2D 
MBRs were not found by the 2D location detectors on the corresponding slices. This is completely reasonable, because 
the inner organ regions may show inconsistent intensity and appearance in different 3D CT scans, and the contrast 
between the organ region and the surrounding background is usually very poor. For such organ detection problems, our 
approach takes advantage of the redundancy among the 2D detection results drawn from different directions and applies 
a majority voting technique to remove the outliers in the 2D detection results. 

In conclusion, we proposed a universal approach that can be used to localize the major organs automatically on 3D CT 
scans. This approach was applied to 12 kinds of organ regions and its efficiency and accuracy were validated by using 
1,300 clinical CT scans.  
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Fig.4. Accuracy evaluations of organ localization results by comparing with the human manual inputs (ground-truth) using 300 CT 
scans.  
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