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Minimum description length (MDL) based group-wise registration was a state-of-the-art method to determine the corresponding
points of 3D shapes for the construction of statistical shape models (SSMs). However, it suffered from the problem that determined
corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling
the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive
sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a
particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was
moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was
then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right) lungs and 50 cases
of livers, (left and right) kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve

the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests.

1. Introduction

Statistical shape models (SSMs) are an efficient method which
considers statistical information of a set of training shapes
to improve the robustness of medical image processing algo-
rithms. It has been widely used in the task of segmentation
and achieved good results [1]. It is reported that the best
three ranked segmentation algorithms on livers are based
on SSMs in the contest held in 2007 [2]. According to our
knowledge, several SSMs have been proposed, which are
point distribution models (PDMs) [3], m-rep [4], SPHARMs
[5, 6], and so on. We focus on PDMs in this paper since it is
the most widely used SSMs.

The main problem of the construction of SSMs is how to
determine corresponding points on each shape. For simple
2D shapes, that is, faces, corresponding points can be deter-
mined manually by placing a set of landmarks on shapes;

however obvious disadvantages are both large manual labors
and the inevitably subjects’ bias. Especially for complex 3D
shapes of clinical data, manual determination of hundreds
or thousands of landmarks is not practical. Therefore, lots
of researches have focused on automatic ways to find corre-
sponding points [1]. The determination of shapes’ correspon-
dence can be generalized as a shape registration problem.
A group-wise based method is proposed to align a group
of shapes according to an information-based theory, called
minimal description length (MDL) [7], in order to get the
simplest description of constructed SSMs [8]. It is reported
that the MDL based method is the state-of-the-art method
according to exhaustive evaluations [9]. At first, the MDL
method can only find the corresponding points of 2D shapes
[8,10, 11]. Recently, it is generalized to deal with the problems
of 3D shapes [12-14]. We follow the pilot study [12], since the
open source codes helped us to understand its essence [15].



In the following context, we call the pilot study [12] the orig-
inal MDL method.

The original MDL method can be divided into three steps.
First, each original surface mesh of genus-0 topology is ini-
tially mapped onto a parameter space of a unit sphere by a
conformal mapping [16]. Each vertex of an original surface
mesh is transformed onto the unit sphere, and a new spherical
mesh built by transformed vertices according to their original
linked relationships is called a parameterized mesh in this
paper. Second, these parameterized meshes are aligned by
manipulating their vertices simultaneously on the unit sphere
in order to minimize the MDL measure. Finally, each of the
aligned parameterized meshes is sampled by a set of uni-
formly distributed points on the unit sphere, and the sampled
points are mapped back by the corresponding inverse con-
formal mapping onto each original shape surface to obtain
corresponding points. Mapping surfaces onto a unit sphere
makes shapes’ registration become easier, since the freedoms
of translation and scale can be eliminated and only the free-
doms of rotation and subjects’ differences are left. However,
the manipulation of parameterized meshes makes them to be
distorted during MDL registration. Some triangles of param-
eterized meshes are shrunk while others are expanded. This
makes the predetermined conformal mapping become poor.
If uniformly distributed positions are sampled on the unit
sphere for each parameterized mesh, less sampling points are
obtained in the shrunk regions and more sampling points
are obtained in expanded regions. Therefore, this method has
suffered from the problem that determined corresponding
points are usually densely located in some parts and coarsely
in other parts on original surfaces.

This problem may be resolved by either redetermining a
new conformal mapping for each shape to replace the poor
one or finding adaptive sampling positions on the unit sphere
instead of the uniformly distributed sampling method. In this
paper, we use the latter method to resolve the problem of the
original MDL method. Here, we propose a method to obtain
adaptive sampling positions on the unit sphere by considering
distortions of parameterized meshes. The proposed method
is based on a particle system which is originally adopted for
modeling isosurfaces of shapes in [17].

2. Materials and Methods

The proposed particle-system based method is operated
when the original MDL registration is finished. Therefore, the
proposed method can be seen as a postprocessing of the pilot
study [12]. The flowchart of the proposed method is given by
Figure 1. The input is a set of parameterized meshes aligned
by the original MDL method [12] on the unit sphere. Vertices
of these meshes are used to generate a probability distribution
to show the frequency of vertices existing at a position on
the unit sphere. This probability distribution can reflect how
parameterized meshes are distorted in the MDL registration.
Next, a set of particles are uniformly placed on the unit
sphere. A particle can be seen as a dot or a sampling position.
Each particle gives repulsive forces to push its surrounding
particles away from itself. The value of the force for a pair
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FIGURE 1: The flowchart of the particle system based adaptive sam-
pling on spherical parameter space to improve the MDL method.
The main steps of the proposed method are surrounded by the dash
rectangle.

of particles is related to both of their distance and the
probability of vertices at which the particles are located.
An energy function can be calculated by adding the forces
of all particles. By minimizing this energy, particles are
manipulated on the unit sphere until the energy becomes
steady. The final particles are treated as vertices to build a
spherical mesh. Finally, this mesh is relaxed to slightly adjust
vertices’ positions on the spherical surface, and the optimal
sampling points are the vertices of the relaxed mesh. When
the proposed method is finished, each parameterized mesh is
sampled at these sampling points on the unit sphere, and then
the sampled points are transformed back to each surface of
organs by its corresponding inverse conformal mapping to get
corresponding points of each shape. The details are described
in the following subsections.

2.1. Probability Distribution for Vertices of Parameterized
Meshes. We adopt the probability distribution for vertices of
parameterized meshes located on the unit sphere to describe
how these parameterized meshes are distorted in the original
MDL registration. If triangles of parameterized meshes are
shrunk in a region, there will be more vertices in that part.
Therefore, vertices have a high probability to exist there.
Conversely, the probability is low in regions where triangles
are expanded. We adopt a parzen window [18] based method
to estimate this probability distribution. Given v;; denoted by
the jth vertex of the ith parameterized mesh, the probability
of vertices existing in a location x on the unit sphere p(x) can
be calculated by

pe=aY Yo(lx-v), (1)
ij
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where « is a coeflicient to ensure f p(x)dx = 1and |x - vij||
is the Euclidian distance of the two points x and v;;. ¢(d) is a

trunked Gaussian kernel whose definition is given by

2

1 d
—exp| —— d < 30,
V2o p( 202)

@d)=0 d> 30,

¢ (d)=
(2)

where o is set to be 0.033 in this paper.

In implementation, we discretize the unit sphere by a 5-
time recursively-refined icosahedron mesh which contains
10242 vertices uniformly distributed on the unit sphere. An
example of the estimated probability distribution is shown by
Figure 2.

2.2. Energy of the Particle-System. 'The energy of the particle-
system is defined by

N
E(xl,...,xN):ZZw(xi,xj)-F(xi,xj), (3)

i=1i% ]

where x;,...,xy are all N particles and their energy is
denoted as E(x,, ..., Xy). F(x;, xj) is the force term of ith and
jth particles and w(x;, x;) is the weight associated for them.
We adopt the force term suggested in [17]. Its definition is
given by

T T..
rtun)- [ (e 5) B e

0 [z > o
@)

where ||rl-j|| is the Euclidean distance of the pair of particles
which are x; and x;. 0 is a parameter. Larger value of ¢
means that a particle has taken forces from more surrounding
particles in a larger region, so more computation costs are
required. But the value should be large enough to make
particles move. In our system, we choose it to be 0.25 for
trade-offs between performances and computation costs.

It is important to design suitable weight terms w(x;, x;) to
make the particle system work properly. If all weight terms
are set to be equal, particles finally spread uniformly on the
unit sphere when the energy is minimized. Here, we make use
of the estimated probability distribution of vertices to design
suitable weight terms in order to obtain the optimal sampling
positions which are adaptive to distortions of parameterized
meshes. The definition of the weight terms w(x;, x;) is given

by

B D(x;) +D(xj)

o(xx) = 200
a
PR p(x)>b, (%)
D(Xi) _ ‘(lp(xz))
B p(x)<b,

where x; is the position on which the ith particle is located.
p(x;) is the estimated probability of vertices at the location

FIGURE 2: An example of the estimated probability distribution
for vertices of parameterized meshes on the unit sphere. The red
regions show where probabilities of vertices existing in those regions
are high, and the blue regions show where the probabilities of
vertices existing in those regions are low. The estimated probability
distribution is able to reflect how triangles of parameterized meshes
are distorted. For example, high probability (red color) means that
triangles in those regions are shrunk, and low probability (blue
color) means that triangles in those regions are expanded.

of x;. a, b, y are parameters whose values are set to be le — 5,
le — 5 and 2.2, respectively in experiments.

2.3. Minimization of the Energy of the Particle-System. The
optimal positions of particles are obtained by minimizing the
energy defined in (3). This can be generalized as an opti-
mization problem. Considering the number of particles is
large, we adopt an iterative gradient descent based method to
make it converge faster to a local minimum. Here, we only
update one particle’s position along the opposite gradient
direction at one time, and this procedure is operated for each
particle in turns. One iteration is called when the iterative
updating for all particles is finished. The pseudocode is given
by Algorithm 1. Its initialization requires a set of uniformly-
distributed particles on the unit sphere (x? (i=12,...,N)),
the same maximal step length associated for each particle for
gradient descent (A; = Ay, (i = 1,2,...,N)), the minimal
step length (A,,), and the total iteration times (T7). When we
update the ith particle’s position in the ¢th iteration, we firstly
calculate a position y' using the current step length A, for the
ith particle along the opposite gradient direction. By using
the condition of [[y'|| = 1, we ensure that the new position
y is on the surface of unit sphere. Then, we calculate the new
energy E, ..., by replacing x; with the new positiony. If E, .., is
smaller than the former energy E |4, we accept y as the new
position for the ith particle in the tth iteration, update E 4
by E, .. and end the loop. If not, we halve the step length of
the ith particle and try a new position to see whether it can
minimize the energy. However, the step length should not be
smaller than A,;,. In such a case, we give up updating the
position of the ith particle in the ¢-iteration and only let the
step length of the ith particle to be equal to A,,.



Computational and Mathematical Methods in Medicine

4
Initialization: x (i = 1,2,...N), A
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BREAK LOOP
END IF
END LOOP
END FOR
END FOR

= Ay (= 1,2,

N)) /\Min’ T

)

ALGORITHM l: An iterative gradient descent based method to minimize the energy of the particle system defined in (3).

In out experiments, we set the iteration times T to be 15.
AMax and Ay, are determined as follows. Before Algorithm 1
begins, we randomly choose 10 percent of particles and
calculate the mean value of the norms (or lengths) of their
gradients. This mean value is denoted by g, ...- Ay 1S St tO
be 10.0/g, > and Ay, is set to be le —4/g, ..

2.4. Construction of Sampling Mesh and Relaxation. When
the Algorithm 1 is finished, the obtained particles’ positions
are treated as vertices to be linked by Delaunay triangles
to build a spherical mesh. This mesh gives how sampling
points (particles) are linked with each other, and this linked
information is required in SSMs. Additionally, we require
this information to slightly adjust particles on the spherical
surface to obtain optimal sampling positions. According to
[19], Delaunay triangles of a surface can be obtained by
constructing convex hulls for a set of 3D points. Constructing
triangles directly by this way lead to a locally ununiform
mesh. This can be improved by the technique of mesh
relaxation, which slightly adjusts vertices’ positions according
to their linked information. Here, we adopt the method
suggested by [20] to optimize the constructed mesh. Finally,
the positions for the vertices of the relaxed mesh are the
optimal sampling positions on the unit sphere.

3. Results and Discussion

3.1. Data. We evaluate the proposed method by 6 kinds of
human organs, which are livers, left and right lungs, left and
right kidneys, and spleens. We collect 47 cases of lungs and
50 cases of other organs from different subjects by a practical
clinical protocol using high-resolution CT (HRCT) with

the slice thickness of I mm and in-plane resolution around
0.6 mm. The organs’ regions are manually labeled on original
scans and then resampled to be saved as binary masks with
the resolution of Imm x Imm x Imm. Finally, marching
cubes followed by mesh decimation using the visualization
toolkit (VTK) [21] is adopted to get a triangles’ mesh for each
organ. The number of vertices for each mesh is related to
organ’s sizes. There are about 3000-5000 vertices for livers
and lungs and 1000-2000 vertices for kidneys and spleens.
These meshes are used as inputs for evaluations.

3.2. Optimal Sampling Positions Obtained by the Proposed
Method. Algorithm 1 requires a given number of uniformly
distributed points (particles) on the unit sphere for its
initialization. It looks like a strict and difficult condition;
however, we can obtain these points with any given number
if we make a little change on Algorithm 1 by setting the terms
of w(xi,xj) in (3) to be an equal value (i.e., w(xi,xj) = 1).
For example, we can get 1000 points uniformly distributed
on the unit sphere as follows. Here, we make use of a 4-
time iteratively refined icosahedron mesh which contains
2562 uniformly distributed vertices on the unit sphere. First,
we break the mesh and randomly select 1000 vertices as
initialized positions for particles. Then we set the terms
w(x;,X;) to be 1 and run Algorithm 1. When the iterative
procedure is finished, we can obtain 1000 points uniformly
distributed on the unit sphere. This procedure is illustrated
by Figure 3. Actually other methods could also be used for
the initialization, such as random selection 1000 points on the
unit sphere.

The uniformly distributed points are treated as initial
positions for the particle system to get optimal sampling
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4-time refined

icosahedron mesh t=0

t=1

t=5 Final

FIGURE 3: Example to obtain 1000 uniformly distributed points on the unit sphere by the iterative procedure of Algorithm 1. Here, we set the
term w(x;, xj) = 1in (3). We randomly choose 1000 vertices of a 4-time iteratively refined icosahedron mesh as initial points (t = 0). Particles’
positions are given after the Ist (f = 1) and 5th (¢ = 5) iterations are finished. The final result is shown at last.

t=1

t=2

t=5 Final

FIGURE 4: Iterative procedure to manipulate 1000 particles on the unit sphere according to Algorithm 1, where the weight terms of w(x;, x;)
in (3) are set to be (5). The probability distribution for vertices of parameterized meshes is shown with colors on the unit sphere. Red parts
show where the probability is high, and blue parts show where the probability is low. The figure (t = 0) shows initialized particles which are
uniformly distributed on the unit sphere. Particles’ positions are shown after the Ist (f = 1), 2nd (t = 2), and 5th (¢ = 5) iterations are finished,
respectively. Final positions of particles are shown by the most right figure from which it can be seen that more particles are located in red

regions and less particles are located in blue regions.

Delaunay triangles mesh

Mesh relaxation

Optimal sampling positions

FIGURE 5: Results of constructed Delaunay triangles mesh, mesh relaxation, and the obtained 1000 optimal sampling positions on the unit

sphere.

positions. By setting the weight terms w(x,-,xj) in (3) to be
(5), Algorithm 1 is able to make the final particles’ locations
to be adaptive to the probability of vertices of parameter-
ized meshes. Figure 4 gives examples to show the iterative
procedure to manipulate 1000 particles on the unit sphere
according to Algorithm 1.

When the iterative procedure is finished, the obtained
particles are treated as vertices to build a spherical mesh by
Delaunay triangles. The left figure in Figure 5 gives the con-
structed Delaunay triangles mesh on the unit sphere. It can be

seen that triangles in local regions are not uniform. The mesh
is improved by mesh relaxation, shown in the middle figure
in Figure 5. The final optimal sampling positions overlaid on
the probability distribution of vertices are shown in the right
figure of Figure 5.

3.3. Corresponding Points and Evaluations on SSMs. We eval-
uate the performances of the proposed method and the origi-
nal MDL method by using six kinds of human organs. Exam-
ples of corresponding points determined by the two methods
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(a) Corresponding points determined by the original MDL method

(b) Corresponding points determined by the proposed method

FIGURE 6: Corresponding points determined by the original MDL method [12] and the proposed method. The organs from left to right are
livers, right lungs, left lungs, right kidneys, left kidneys, and spleens. Red circles illustrate the regions where there are fewer corresponding

points.

are given by Figure 6. It can be seen that corresponding points
are gathered in partial regions on the surfaces of organs for
the results of the original MDL method. Especially, there
are nearly no corresponding points in the regions indicated
by red circles. This problem is able to be corrected by the
proposed method. It can be seen that corresponding points
are almost uniformly located on the surfaces of organs.

We build two SSMs based on the corresponding points
determined by the two methods and compare their perfor-
mances by the generalization and specificity tests, which are
the most widely used method to evaluate SSMs suggested by
[22]. Generalization tests are based on leave-one-out experi-
ments, where N — 1 shapes are used for training SSMs and the
remaining one is used to test whether it can be represented
by the trained SSMs. The distance between the untrained
shape and the reconstructed shape by SSMs is calculated to
show how much difference exists. Low values indicate that the
constructed SSMs have good generalization performances on
untrained shapes. The measure of generalization is defined by

13
N;Dm(xz

where N is the total number of shapes, X; is the ith untrained
shape, X is the corresponding reconstructed shape by SSMs
using the largest M eigen-vectors, and Dis(X;,X]) is the
distance of the two shapes, X; and X.

In specificity tests, the constructed SSMs are used to
synthesize a large number of shapes. Each synthesized shape
is compared with training shapes and finds the closest one.
The mean value of distances between synthesized shapes
and their corresponding closest training shapes is used as
the measure of specificity tests. Low values indicate that the
trained SSMs have good specificity on training shapes. The
measure of specificity is defined by

G(M) = X)), (6)

le .
S(M) = ¢ ; )glEISI)lXDIS (Y,X;), 7)

where L is the number of synthesize shapes by SSMs using
M largest eigen vectors, Y; is the ith synthesize shape, Qy is
the set of training shapes to build SSMs, and Dis(Yi,Xj) is
the distance of the two shapes, Y; and X ;. In experiments, we
synthesize 10000 shapes for the specificity test.

Shape distances in generalization and specificity tests are
calculated by (8), in order to make the comparison of two
shapes not to be concentrated on corresponding points [23].

1 1
Dis(X,Y) == | = mind (x,y) + — mind (x,
(X, Y) U};{ya (xy) Vy;xex (xy)

(8)

where x and y are vertices of the two shape X and Y,
respectively, d(x,y) is the Euclidian distance of two vertices,
and U and V are the number of vertices for the two shapes.

Since livers and lungs are larger than kidneys and spleens,
we use 1000 corresponding points to build SSMs of livers
and lungs and 500 corresponding points to build SSMs of
kidneys and spleens. Additionally, we adopt general-purpose
computing on graphics processing units (GPGPU) to deal
with the large computation costs on (8).

Results on generalization and specification tests are given
in Figure 7. We calculate the mean values and the standard
deviations for generalization and specificity measures to
compare the two methods. It can be seen that the proposed
method gives smaller measures of generalization and speci-
ficity for all the six kinds of organs, which means that the
proposed method performs better than the original MDL
method.

3.4. Discussion. Although it is a good idea to conformally
transform each shape onto a unit sphere to eliminate varia-
tions on translations and scales before the MDL registration
is performed [12], the conformal mappings become poor
because manipulation of parameterized meshes makes them
to be distorted in shape alignment. Therefore, a uniform
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FIGURE 7: Two SSMs constructed by both the original MDL method [12] and the proposed method are compared in the generalization and
specificity tests on the human organs of livers, left and right lungs, left and right kidneys, and spleens. We compare the two SSMs when the
largest M (1~10) eigen vectors are used. The bars give the mean values, and the positive and negative steps give the standard deviations.

distributed sampling on the parameterized meshes after
the MDL registration causes the determined corresponding
points to be densely located in some parts and coarsely
in other parts. An example of uniform sampling adopted
in the original MDL method is shown by the most left
figure in Figure 4 (with subtitle “t 0”). It can be seen
that there are a few sampling positions located in regions
where triangles of parameterized meshes are shrunk (red
regions) and relatively more sampling positions in regions
where triangles are expanded (blue regions). This causes
the problem that determined corresponding points are not
uniformly distributed on the original surfaces of organs.

In the proposed method, the obtained optimal sampling
positions are adaptive to the distortions of parameterized
meshes. The most right figure (with the subtitle “Final”) in
Figure 4 gives such an example. It can be seen that there are a
lot of sampling positions in the red regions where triangles are
shrunk and relatively few positions in the blue regions where
triangles are expanded. Therefore, determined corresponding
points can spread uniformly on the original surfaces of organs
even though conformal mappings become poor after MDL
registration.

In the generalization and specificity tests, it can be seen
that SSMs built by corresponding points determined by
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()

FIGURE 8: Mean shapes of SSMs constructed by the corresponding points determined by the original MDL method [12] and the proposed
method for livers. It can be seen that the part indicated by the red circle cannot represent detailed shapes of livers.

Determined corresponding points

(a)

Sampling positions on the unit sphere

(b)

FIGURE 9: An example to show the dense-line artifact we encountered when we reimplemented the work [24]. (a) The determined corre-
sponding points for a case of livers. The dense line artifact is indicated by the red arrow. (b) The adaptive sampling positions on the unit
sphere. The line artifact exists in the reconnected part (indicated by the red arrow) through which two half-spherical sampling meshes are

united.

the proposed method perform better. Here, we give an exam-
ple to show the reason. Figure 8 gives the mean shapes of
SSMs built by the corresponding points determined by the
original MDL method and the proposed method for livers.
It can be seen that the mean shape built by the original
MDL method loses detailed information of livers’ shapes. In
particular, the mean shape decays in the part indicated by the
red circle. However, the mean shape contains more details for
the livers’ shapes by using the proposed method. Therefore,
SSMs built by the proposed method performs better than
SSMs built by the original MDL method.

It seems that there is another work to resolve the same
problem of original MDL in [24], where a 2D-dithering based
remeshing method was adopted [20, 25]. We reimplement
it; however we encounter a dense-line problem. An example
of this problem is shown by Figure 9. In methodology, the
method [24] has to firstly get two adaptive half-spherical
meshes separately and then unit them to construct a whole
spherical mesh whose vertices are the optimal sampling posi-
tions. If the densities of vertices on the two meshes’ margins
(through which the two meshes are connected) are different,
this artifact problem will happen. We refer to all the related
literature [20, 23, 24], and we find no descriptions of how
to keep the two densities equal while ensuring the required

condition of the MDL method that the number of sampling
positions should be unchanged. Although it seems that there
is no such a line artifact problem in [24], we do not know
how to avoid this problem. In the proposed method, since
we manipulate a set of particles to find optimal sampling
positions directly on the unit sphere, the connection of two
meshes is not required. Therefore, the proposed method
is able to avoid the line artifact problem in methodology.
Additionally, we feel that it could not be fair to compare
the performances of the proposed method and the reimple-
mented version with dense-line artifacts. Therefore, we only
state the fact that we encounter in the reimplementation of
[24] and do not give the compared results.

Additionally, we note that there is a particle and entropy
based method for SSMs [26]. The difference is that we apply
the particle-based method as the postprocessing step of MDL
method in order to obtain optimal sampling positions on the
unit sphere.

4. Conclusion

MDL based shape registration method proposed in [12] was
a state-of-the-art method to determine the corresponding
points on surfaces of 3D organs. Since uniformly distributed
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points on the unit sphere were used to sample the shapes
registered in the parameter space, the obtained correspond-
ing points were not uniformly distributed on the original
surfaces of organs. In this paper, we proposed a particle
system based method to find the optimal sampling positions
on the unit sphere to resolve this problem. In our method,
a set of particles was manipulated on the unit sphere to
find the optimal sampling positions by minimizing a care-
tully designed energy function. We evaluated the proposed
method on six kinds of human abdominal and chest organs,
which were livers, left and right lungs, left and right kidneys,
and spleens. We collected 47 cases of lungs and 50 cases of
other organs from different subjects to evaluate the proposed
method. Experiments showed that the proposed method
was able to find optimal sampling positions on the unit
sphere and resolve the problem of the original MDL method.
Additionally, we compared the proposed method with the
original MDL method in the generalization and specificity
tests. Experimental results showed that SSMs built by the
proposed method performed better than SSMs built by the
original MDL method. In future, we will apply the built SSMs
in some segmentation tasks of human organs.
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