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Model Constructions for Computational Anatomy:
Fundamentals and Applications
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This review article describes four parts of our recent progresses in the research which has
been performed under the research project “Computational anatomy for computer-aided diagnosis
and therapy: Frontiers of medical image sciences” (http://www.comp-anatomy.org/) funded by
Grant-in-Aid for Scientific Research on Innovative Areas, MEXT, Japan. The overall purpose of our
works under this project is to engage in model constructions for computational anatomy and the
applications of the models developed to computer-aided diagnosis (CAD) for automatically recogniz-
ing the anatomical structures and analyzing the functions of different organs in a whole body region,
all of which are imaged with imaging modalities such as CT, MR, PET, eye fundus photograph, and
dental panoramic radiograph. These progresses show the efficiency and potential usefulness of the
proposed research works by the promising results.
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1. Introduction

Nowadays, modern imaging devices represented by CT, MRI, and PET are widely used in clinical
practice. High performance of such scanners can provide detailed information of the whole body region,
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not only showing real anatomical structures of a patient in 3D (sometimes even in 4D), but also being
able to visualize the functional information of the inner organs. Therefore, these medical images have
been regarded as an important reference for screening, precise diagnosis, surgery, and therapy purposes.

A 3D volumetric image typically consists of a large number of axial slices. For example, a CT scan in
torso region generally generates 800-1200 2D axial slices, which causes a lot of interpretation burdens
for radiologists. Computer-aided detection/diagnosis (CAD) can help to reduce such burden by assisting
image interpretation [1]. Especially, an advanced CAD system that aims at multi-disease detection from
multi-organs is required to be investigated in torso CT images [2], and even images in other imaging
modalities. In order to realize such aim and develop higher-level CAD systems, automatic segmentation/
recognition techniques of the detailed anatomical structures by constructing the model of the human
body can be often a powerful approach; however, it is still a challenging issue. As one of the solutions,
modeling the human anatomy and function for normal and abnormal human bodies based on a large
number of medical images is expected as one of the key techniques [3].

In this review article, we introduce our four state-of-the-art research works that focus mainly on organ
segmentations based on machine learning and similar image retrieval, muscle segmentations by using
shape and relation models, multiple lesion detections by comparing with normal body models, and inferi-
or border of mandible detection by the model selection. These works demonstrate the state-of-the-art
techniques for fundamental image segmentation based on the modeling approach and show the useful-
ness of those techniques on the CAD applications by the promising results [4], all of which have been
performed under the research project “Computational anatomy for computer-aided diagnosis and thera-
py: Frontiers of medical image sciences” (http://www.comp-anatomy.org/) funded by Grant-in-Aid for
Scientific Research on Innovative Areas, MEXT, Japan.

2. Examples of modeling and applications

A) A universal organ segmentation approach on torso CT images

Background/Purpose: The aim of this research subject is to develop a universal approach that can
be used to automatically segment the different massive organ regions on CT images. The traditional
approaches for developing automatic segmentation algorithms put the interests on how to generate an
ad-hoc method to extract the specific organ-appearance on CT images by the human designers. A com-
mon model that can show the anatomical structures of all organs should be constructed firstly and then
used to provide the prior knowledge for guiding the segmentation task. However, generating such a
model to represent all the possible anatomical structures in both normal and abnormal CT cases is diffi-
cult and sometimes unrealistic, especially in the case that only a limited number of CT images are avail-
able during the development. Therefore, the approach that can learn and update the knowledge of the
model directly from database and solve the different organ segmentation problems simply and straight-
forwardly is expected.

Proposed model: We have proposed a new approach [5-11] to modeling the organ segmentation
process by finding its location in CT images, searching the image patterns that are similar to the inputted
image in a database, and transferring the anatomical structures in the selected image patterns directly to
the inputted image as the references to guide the segmentation. The proposed approach is fully based on
machine-learning and data-driven methods that use more image data instead of complex algorithms to
enhance the robustness and accuracy of the organ segmentation process (refer to Fig. 1). The key point
of our proposed approach is to simplify the organ segmentation process as a content-based image retriev-
al and anatomical structure transformation problem.
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Fig. 1 Processing flow of the proposed organ segmentation approach.

The approach includes three processing steps: (1) automated target organ localization, (2) content-
based image retrieval and atlas construction, and (3) atlas-based organ segmentation. Two techniques
have been used in this approach; one is fast object localization based on machine-learning [6], and the
other is image retrieval by using a phase-correlation registration based on the fast Fourier transform
(FFT) [5].

Experiment and Evaluation: A database (DB) that includes 100 cases of 3D volumetric CT cases
was used [11]. These CT cases were collected at Gifu University Hospital by two kinds of multi-slice CT
scanners (LightSpeed Ultral6 of GE Healthcare and Brilliance 64 of Philips Medical Systems). The heart,
liver, spleen, left kidney, and right kidney were selected as the segmentation targets for evaluating the
performance of the proposed approach. One of the investigators manually extracted heart regions in 50
CT cases, liver regions in 38 CT cases, spleen regions in 60 cases, left kidneys in 93 cases, and right kid-
neys in 35 cases. These regions were used as the ground truth for accuracy evaluation. A leave-one-out
cross validation was employed in the experiment.

The experimental results showed that the proposed scheme can solve the segmentations of the
five different inner organs by using one algorithm. We confirmed that these five target organs were
segmented automatically and correctly in all CT cases. The average coincidence ratios determined using
the Jaccard similarity coefficient (JSC) values were 0.67 for heart, 0.78 for spleen, 0.86 for liver, 0.77
for right kidney, and 0.73 for left kidney [10].

The results indicate that our proposed method is very robust for different organ segmentations in
both normal and abnormal CT cases. The segmentation results were comparable to the ground truths
that were manually inputted by a medical expert, and the accuracy may be improved by using shape
information in future works [12].

B) Surface muscle recognition on CT images

Background/Purpose: The skeletal muscles in CT images are commonly not paid attention by
most of the doctors because their interest lies in the internal organs that are affected by diseases. There-
fore, the effective use of image information is expected for the torso CT images, which are originally
imaged not for the diagnosis of muscles but for the other purposes (e.g. finding diseased organ (s)).
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Fig. 2 Processing flow of rectus abdominis muscle recognition.

Since all torso CT slices do contain muscle regions, we have been investigating an effective use of these
images.

Proposed model: In our previous work, we have proposed anatomical shape models and applied
to the psoas major muscles [13] and the rectus abdominis muscles [14], both of which are generated by
the statistical analysis of the training datasets separately. These models represent each muscle’s outer
shape by approximate functions and the model-based approach was found to be effective for segmenting
the muscle regions with characteristic shapes. However, in order to achieve surface muscle segmenta-
tion based on the model, for example, for the rectus abdominis muscles and lateroabdominal muscles,
one must consider the variations of the body. To overcome this issue, we proposed a new method to nor-
malize the body shape with a virtual image unfolding technique [15, 16].

Experiment and Evaluation: The method consists of three steps [see Fig. 2]. Firstly, in order to
simplify the body structure, virtually-projected image is produced by virtually unfolding a 3-D human
body to a 2-D plane. However, before this procedure, we need to take into account the subcutaneous fat
existing on areas of the target muscle, which is a major factor causing the body difference between the
cases. Therefore, the subcutaneous fat region is removed on the basis of the density (CT value) differ-
ence information before the unfolding processing. Secondary, anatomical features, as landmarks, are rec-
ognized on the virtually unfolded image to make a shape model; the landmarks correspond to the origin
and insertion of the muscle as anatomical definition. Then the centerline as a fiber line generated by con-
necting these landmarks is determined (see upper two images in Fig. 2). The muscle model is generated
by including all muscle fiber lines represented by the centerlines on the virtually unfolded image. Finally,
the area overlapping with model image is defined as initial muscle region, then the “true” muscle region
is determined on the basis of the gray value (see lower two images in Fig. 2).

We applied this method to 10 patients with no evidence of abnormalities in the muscle region. As a
result, 89.0% concordance with manual segmentation was achieved.

Thus for the muscle recognition in abdominal regions with large body differences, it was found that
the virtually unfolded image technique can be very effective to simplify the body variations. The result
suggests the possibility of an application of this method to the other muscle recognitions.
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Fig. 3 Example of organ and body shape recognition. (a) Liver surface on FDG-PET scan, (b) two examples of bladder sur-
face, (c) standard body surface deformed, and (d) landmark distribution set on the body surface deformed by TPS.

C) Anatomical standardization and temporal subtraction on FDG-PET

Background/Purpose: Diagnostic imaging on FDG-PET scans is often used to evaluate chemo-
therapy results of cancer patients. The interpretation of SUV (standardized uptake value) requires experi-
ences to distinguish the activity index from the background signal depending on each organ or tissue.
Anatomical standardization approach for molecular imaging on brain functions has been proposed to ana-
lyze region specific activities by comparing with those in normal database and to obtain statistical results
to indicate the likelihood of abnormality by measuring the difference of the patient activity from the esti-
mated mean of normal database [17, 18]. The purpose of this subject was to develop a new CAD system
with anatomical standardization of torso FDG-PET scans as a normal model of FDG accumulations in
torso regions and to evaluate the radiologists’ performance when the output from the automated detec-
tion system was used [19]. In addition, the observer performance study was performed in terms of “with-
out” and “with” the system output for detecting temporal changes on images because radiologists often
compare the changes of lesions’ activities between previous and current examinations for the evaluation
of chemotherapy prognosis.

Proposed model: The CAD scheme developed consists of the following 6 steps: (1) anatomical stan-
dardization of normal FDG-PET scans, (2) normal model construction from the normal FDG-PET scans,
(3) Z-score mapping based on the statistical image analysis, (4) automated detection of abnormal regions,
(5) comparison of the detected regions between previous and current scans, and (6) image subtraction of
previous and current scans. The first step of the anatomical standardization requires a data collection of
normal cases. The normal cases were collected from a medical checkup institution for cancer screening
by using FDG-PET scans in Japan. All of the normal cases are deformed into a standard body surface at
the second step after the organ locations of liver, bladder, shoulder, and body surface are recognized on
the basis of the image recognition methods for anatomical standardization. Fig. 3 shows examples of
recognized surface regions of the liver in Fig. 3 (a) and bladders in Fig. 3 (b). The points are spread
throughout entire body surface, as shown in Fig. 3 (c) and (d), which are used as the landmarks in image
deformation by using a thin-plate spline (TPS) technique. The image deformation of many normal cases
into one body structure can create two data of the mean (M) and the standard deviation (SD) of pixel val-
ues in each pixel.

Experiment and Evaluation: The original SUVs can be converted into statistical values by the M
and SD. Z-score mapping based on the statistical image analysis provides a statistical index of FDG accu-
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mulation as a result of model application. The index as Z-score can be recognized as a severity of abnor-
mal region by comparing the normal accumulation range obtained from the normal database. The detec-
tion performances of a single examination database (63 abnormal cases) was 82.6% in sensitivity with
12.4 false-positive (FP) marks per case [19].

The image deformation for constructing normal model was also applied to the temporal subtraction
technique [20]. The subtraction images can be easily obtained by the anatomical standardization results
because all of the patients’ scans were deformed into standard body shape [17, 18]. An observer study
was performed without and with CAD to evaluate the usefulness of the scheme by ROC (receiver operat-
ing characteristic) analysis. Readers were asked to determine their confidence levels from absolutely no
change to definitely change between two scans on a continuous scale. The recognition performance of
the computer for activity changes among 43 pairs of previous and current scans was 96.0% in sensitivity
with 31.1 FP marks per scan. The average of area-under-the-ROC-curve (AUC) from 4 readers was
increased from 0.85 without CAD to 0.90 with CAD (p=0.0389, DBM-MRMC). The average interpreta-
tion time was decreased from 42.11 to 40.04 seconds per case (p=0.625, Wilcoxon test) [21]. We con-
clude that the CAD system for torso FDG-PET scans with temporal subtraction technique might improve
the diagnostic accuracy of radiologists for cancer therapy evaluation.

D) Inferior border segmentation of mandible on dental panoramic radiographs

Background/Purpose: A large number of dental panoramic radiographs (DPRs) are obtained
annually to examine dental diseases in dental clinics over the world. On DPRs, not only the dental region
but also nasal cavity and cervical regions are included. However, general dentists are apt to focus only on
dental diseases when reading DPRs. Therefore, we have been investigating the CAD systems for detec-
tion of extra findings on DPRs: measurement of mandibular cortical width (MCW) [22, 23] for diagnosis
of osteoporosis, detection of carotid artery calcifications (CACs) [24] for a possible risk of arteriosclero-
sis, and detection of maxillary sinusitis [25]. Finding these extra signs on DPRs may bring a supplemen-
tal benefit to asymptomatic patients with these diseases.

Detection of inferior border of mandible is essential for the measurement of MCW. It is also used in
the determination of regions of interest for CAC detection and maxillary sinus areas. Therefore an accu-
rate detection of the border is the first step for our computerized analysis of DPRs.

Proposed Model: Although overall shapes of mandible border are similar, local variations and size
variations must be taken care of. Therefore, our border detection procedure consists of a similar model
selection and model fitting. Fig. 4 illustrates the contour detection process. The models used in this

Model
construction (a) Manual contours

Model
application

(d) Mandibular edge detection (e) Distance transformation (f) Model fitting
(circles specifying MCW
measurement points)

Fig. 4 Mandible contour detection process.
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study are the manual mandible contours of 100 training cases obtained by an experienced dental radiolo-
gist [Fig. 4(a)]. These contours serve as initial models and are also used for creating a mask for the
direction-specific edge detection. In the creation of the mask, 100 model contours are overlaid [Fig. 4
(b)], and the margin is added by morphological dilation. The lines are drawn from the center of the
upper edge for division of the mask into 7 regions with different directions of interest [Fig. 4 (c)].
Experiment and Evaluation: In border detection for a test case, Kirsch’s method for the Canny
edge detector is applied to detect region-specific edges using the mask [Fig. 4 (d)]. After potential
edges are detected, the most similar contour model is selected by similarity measures based on the dis-
tance transformation [Fig. 4 (e)]. Finally, the selected model is fitted to the mandible contour of the test
case by the active contour model [Fig. 4 (f)]. By leave-one-out cross validation test, the detection was
generally successful in all cases with a small number of partial failures in mandibular angle regions.

3. Summary

Our recent progresses for anatomical model construction and applications based on multimodality
medical images were described.

e We were able to improve our universal solution for automatic organ segmentation and confirm its
usefulness and efficiency by applying to 5 kinds of organ regions based in 100 CT cases. This work
may be beneficial to the further anatomical model constructions by providing a possible way to ex-
tract a large number of anatomical structures quickly and automatically from the CT images.

e For other structures with characteristic shapes and a large inter-patient variation, such as muscles,
the development of an automated detection scheme based on the simplified mathematical shape
models was described. By use of the virtual unfolding technique, the effect of the body difference
could be reduced, so it was effective for automatic recognition of the skeletal muscles.

e A whole body probabilistic model to show the metabolic activities of glucose in the normal organs
and tissues on FDG-PET images was described. This work showed the possibility of detecting the
lesions by using statistical comparison methods of the patient image with a normal human body
model. The clinical application to detect temporal changes as a CAD scheme was demonstrated and
the effectiveness of the proposed CAD scheme was confirmed by the observer performance study.

e More specific application of the similar-model based approach was described in the mandible contour
detection, which showed the encouraging results.

As shown in this article, the models for universal anatomical structure recognitions, muscle recogni-
tions, multi-lesion detections, and mandible contour detection have been proposed by our group for solv-
ing the problem of the multi-lesion detection in multi-organs. Our models have been also applied to many
CAD systems and their good performances and usefulness have been confirmed.
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