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Abstract— This paper describes the purpose and summary of our 

progress in the research work, which is a part of research project 

“Computational anatomy for computer-aided diagnosis and 

therapy: Frontiers of medical image sciences” funded by Grant-

in-Aid for Scientific Research on Innovative Areas, MEXT, 

Japan. The main purpose of our research in this project is to be 

engaged in model construction of computational anatomy and 

CAD applications for automatically recognizing the anatomical 

structures of organ/tissue as well as lesions and analyzing the 

functions of different organs in whole body region based on 

different image modalities such as X-ray CT images, MR images, 

FDG-PET images, eye fundus photographs, dental panoramic 

radiographs and ultrasound images.  In the whole term (five 

years) of this project, six progresses in anatomical model 

construction and more than nine progresses in CAD 

developments have been achieved. These progresses show the 

efficiency and potential usefulness of the proposed research 

works by the promising results.  

 
I. INTRODUCTION 

Modern imaging devices represented by CT, 

MRI, and PET have been widely used in clinical 

medicine. The high performance of such scanners 

can provide detailed information of the whole body 

region, not only showing real anatomical structures 

of the patient in 3D, but also being able to visualize 

the functions of the inner organs within a short time. 
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Therefore, these medical images have been 

regarded as an important reference for screening, 

precise diagnosis, and surgery purposes in clinical 

medicine.  

Medical images typically include a lot of 

diagnostic information that need to be interpreted 

by the doctors. For example, a torso CT scan 

generally generates 800-1200 2D axial slices and 

causes a lot of interpretation burdens for 

radiologists. Computer-aided diagnosis (CAD) can 

help to reduce such burden and assist image 

interpretation [1]. In order to realize a future-CAD 

that aims to do multi-disease detection on multi-

organ regions from multi-modality images, 

automatic recognition of the detailed anatomical 

structures of organ/tissue as well as lesions and 

constructing the model of the normal human body 

are required [2]; however, it is a challenging issue. 

As one of the solutions, modelling the human 

anatomy and function for normal human body and 

abnormal lesions based on a large number of 

medical images is expected as one of the key 

techniques [3-5].  

II. ACHIEVEMENTS 

Our research activities have been focused on the 

novel developments in two research topics; one is 

the model construction and the other is CAD 

applications. These activities were followed on our 

research plan. The overview and relationship of 

these subjects are shown in Figure 1. We pick up 

the progress and summary in six research subjects 

as examples and describe each progress in the 

following section.  

A. An universal organ segmentation approach based on 

machine-learning and similar image retrieval [6-14 ] 

Purpose: The aim of this research subject was to 

model the process of organ segmentations and 

develop a universal scheme that can be used to 

segment the different solid organ regions 

automatically on CT images in the same way. We 

simplified the organ segmentation process by 

finding its location in CT images, retrieving and 

using the similar organ patterns in a database as the 

reference, and separating the organ and background 

by an optimization of a cost function. The proposed 

approach was a target-free segmentation method 

 

Fig. 1 Overview of our achievements 
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and fully based on machine-learning and data-

driven methods. The advantage was that this 

approach uses more image data instead of complex 

algorithms to enhance the robustness and accuracy 

of the segmentation process [6-10].  

 Methodology overview: We modelled the 

different organ segmentation processes as two 

standard modules: “object detection” and “organ / 

background separation”, and included three 

processing steps: (1) automated target organ 

localization based on machine-learning [7,9], (2) 

content-based image retrieval and patient-specific 

atlas construction [6], and (3) foreground / 

background separation by using iterated Graph-cuts 

based on atlas [10]. The features in methodology 

were that, for step 1, we proposed a 2D-detection 

and 3D-voting structure to realize a robust organ 

localization task by using a small number of 

training images; for step 2, we used a phase-

correlation registration based on the fast Fourier 

transform (FFT) to accomplish a fast calculation of 

similarity measure of organ appearances in different 

CT images; and for step 3, we combined 

probabilistic atlas with the graph-cuts method to 

obtain a better result for organ segmentation on CT 

images. 

Results: Two databases (DBs) that included more 

than 1000 cases of 3D volumetric CT cases were 

used for performance evaluations. These CT cases 

were collected at Gifu University hospital and 

Tokushima University hospital by three kinds of 

multi-slice CT scanners (LightSpeed Ultra16 of GE 

Healthcare, Aquilion of Toshiba, and Brilliance 64 

of Philips Medical Systems). Eighteen kinds of 

organ and tissue regions of heart, left- and right-

lungs, liver, gallbladder, pancreas, spleen, stomach, 

left- and right-kidneys, IVC and ventral aorta, 

abdominal rectus muscles, left- and right-psoas-

major-muscles, bladder, uterus and rectum, left- and 

right-femur-heads were selected as the targets for 

organ localizations and nine kinds of solid regions 

(liver, heart, spleen, gallbladder, bladder, left/right 

kidney, left/right psoas major muscle) were selected 

for evaluating the performance of the segmentation 

process.  

We confirmed that the locations of 18 kinds of 

organs can detected correctly in more than 90% CT 

cases in two DBs. One example is shown in Fig.2. 

Nine kinds of massive organ regions can be 

segmented by our proposed scheme as shown in 

Fig.3. The ground truth of those organs in about 

100 CT cases were manually extracted, and we 

found that the average coincidence ratios (JSC 

values) of all kinds of organs between automated 

segmentation results and ground truth were 

distributed from 0.79 to 0.91. These results indicate 

that our proposed scheme was very robust for 

different organ segmentations in both normal and 

abnormal CT cases. The segmentation results of 

massive organs were comparable to the manual 

inputs of the human operators [10].  

Conclusion: We proposed a universal scheme for 

the segmentation of different organ regions 

automatically in 3D CT cases. This scheme was 

 
Fig. 2 An example of the localization results for 18 kinds of major organs and tissues in a 3D CT scan. Three slices that pass through the 

detected center position of the target organ are shown. The rectangle indicates the detected organ location (bounding rectangle of the heart, 

left-lung, right-lung, liver, gallbladder, pancreas, spleen, stomach, left-kidney, right-kidney, IVC & ventral aorta, abdominal rectus 

muscles, left-psoas-major-muscle, right-psoas-major-muscle, bladder, uterus & rectum, left-femur-head, and right-femur-head, from the 

left to right sides). 
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applied to localize 18 kinds of targets and segment 

9 kinds of solid organs form a large number 

(>1000) of CT images. The experimental results 

showed the efficiency and usefulness of proposed 

scheme for understanding and computing the 

human anatomy based on medical images. 

B. A model-based approach to recognize deep and surface 

muscle region in CT images [15-18] 

Purpose: In the super-aging society, for 

rehabilitation and extension of healthy life 

expectancy, accurate measurement of skeletal 

muscle volume is required. Our purpose is to 

develop a modelling technique of statistical shape 

model that takes into account the individual 

differences of skeletal muscle volume. Then, we 

develop site-specific automatic recognition 

techniques of the skeletal muscle using the 

generated shape model. We target two regions of 

the deep muscle and surface muscle. First, in the 

deep muscle, we target psoas major muscle region. 

Since psoas major muscle is located in the deep 

region, it is less sensitive to individual differences 

in body type. In the surface muscle, we target rectus 

abdominis muscle, latero abdominal muscle and 

trapezius muscle. The surface muscles are 

susceptible to individual differences in body size. 

Methodology overview: Generally, shape model 

based method is effective when recognition target 

has a characteristic shape. Figure 4 shows the flow 

of the skeletal muscle recognition based on the 

shape models. First, the shape model is generated 

from training data. Then, anatomical feature points 

(landmarks: LMs) and virtual muscle fibers 

(centrelines) are automatically recognized on the 

test data. Finally, segmentation is achieved by 

fitting the shape model to the LMs and centrelines. 

In the deep muscle, for example, the psoas major 

muscle has the spindle-shape. Shape model is 

generated from the manually segmented regions 

obtained for training data. The muscle contour is 

represented by using a mathematical function. In 

other words, an approximate curve (quadratic 

function) is set as a model for each centreline. In 

the recognition process, the shape model functions 

are fitted to test data. Then we calculate the fitting 

parameters representing the individual differences, 

and achieve the recognition. 

In the surface muscle, individual differences in 

body type affect the fitting process of the shape 

model. Therefore, in order to simplify the body 

structure, we proposed a new method with a 

virtually projected image that is to unfold virtually 

a 3-D human body to a 2-D plane. It has been 

integrated into an automated recognition for surface 

muscles including rectus abdominis muscle, latero 

abdominal muscle and trapezius muscle. Secondly, 

to take into account the body differences on the 

virtually unfolded image, we improved the 

generating method of virtually unfolded image by 

the removal of subcutaneous fat region which is 

widely different between patients. The new method 

for generating the virtually unfolded image was 

proposed to simplify the body difference and to 

increase robustness of the anatomical feature 

 
Fig. 3. An example of the segmentation results for 9 kinds of major organs and tissues in 3D CT scans. One coronal slice that passes 

through the detected center position of the target organ is shown. The segmented organ regions of liver, heart, right-kidney, left -kidney, 

left-psoas-major-muscle, right-psoas-major-muscle, spleen, gallbladder, and bladder are shown from left to right. The 3D contour of each 

segmented organ is visualized by using surface rendering and shown under the image. 
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recognition on the images. Finally the muscle 

region was recognized on the image using shape 

model, which was indicated by the area, including 

all muscle fiber lines.  

Results: In the five years of this research project, 

we achieved a good recognition performance for 

two types of muscle, a deep muscle, i.e., psoas 

major muscle, and surface muscles, i.e., rectus 

abdominis muscle, latero abdominal muscle and 

trapezius. Figure 4 (lower part) below shows the 

recognition result of each muscle region. The 

recognition performance for each muscle is 72.3% 

in psoas major muscle (80 cases) [15], 84.3% in 

rectus abdominis muscle (10 cases) [16], 83.0% in 

latero abdominal muscles (10 cases) [17] and 

91.6% in trapezius muscle (6 cases) [18]. In 

conclusion, for the muscle recognition of deep 

muscle regions with small body differences, the 

statistical shape model is effective to detect muscle 

region. For the muscle recognition of surface 

regions with large body differences, the virtually 

unfolded image is effective to simplify the body 

variations. It suggests the possibility of an 

application of this method to the other muscle 

recognitions. 

C. FDG-PET: Temporal subtraction for cancer treatments 

[19-22] 

Purpose: Diagnostic imaging on FDG-PET scans 

was often used to evaluate chemotherapy results of 

cancer patients. Radiologists compare the changes 

of lesions' activities between previous and current 

examinations for the evaluation.  Recently, an 

influence of fat components in body on SUV 

measurements is a typical issue in diagnosis 

because patients tend to lose their weight during the 

treatment. A normalized SUV (Standardized 

Uptake Value) by lean body (SUL or SUVbw) mass 

is recommended in PERCIST (evolving 

considerations for PET Response Criteria in Solid 

Tumors). The normalized SUV was obtained by the 

original SUV, the patient body weight with fat, and 

height. To deal with the typical clinical issues, we 

aimed to construct a new normal model for torso 

FDG-PET by using SUL. 

Methodology overview: Z-score mapping based on 

statistical image analysis was applied to the 

temporal subtraction technique. The subtraction 

images can be obtained based on the anatomical 

standardization results because all of the patients' 

scans were deformed into the standard body shape 

[19, 20]. 

An observer study was performed without and 

with CAD to evaluate the usefulness of the scheme 

by ROC (receiver operating characteristics) analysis. 

Readers were asked to set their confidence levels 

from absolutely no change to definitely change 

between two scan on a continuous scale [21]. 

To construct a new normal model based on SUL, 

each SUV in every locations of a patient was 

converted into SUL by using his/her body weight 

 

 
 

Fig.4  Recognition results of surface and deep muscle 

 
Fig.5  Effect of SUL normal model  
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and height. After the SUL distribution was obtained, 

the deformation process was applied to construct 

the standardized body shape. The same procedure 

to construct the normal SUV models was applied to 

the SUL model construction. The differences of 

voxel values between SUV and SUL normal models 

in each gender were obtained to compare the two 

models [22]. 

Results: The recognition performance for the 43 

pairs was 96% sensitivity with 31.1 false-positive 

marks per scan. The average of area-under-the-

ROC-curve (AUC) from four readers was increased 

from 0.85 without CAD to 0.90 with CAD 

(p=0.0389, DBM-MRMC). 

The effect of SUV correction with lean body 

mass in lung and liver was confirmed on graph 

plots of BMI vs SUVs and SULs obtained from 

normal cases. Figure 5(a) shows the constructed 

normal model by using SUL distributions. Figure 5 

(b) indicates the difference of voxel values between 

the SUV and SUL normal models. The values in 

lung regions in each gender were corrected in the 

SUL models. Abdominal regions were strongly 

affected by the fat components as shown on SD 

models in each gender. Figure 5(c) shows an 

example case with an abnormal spot in lung. The Z-

score based on SUV model was 15.8, but the Z-

score based on SUL model was 20.1. The 

abnormality of the spot was estimated appropriately 

in the SUL model. 

We confirmed that the Z-score in torso FDG-PET 

scans by using not only SUV but also SUL was 

helpful in cancer diagnosis for screening, metastasis, 

and chemotherapy. 

Conclusion: We have confirmed the fundamental 

usefulness of CAD system for torso FDG-PET 

scans to interpret temporal changes between two 

time series examinations such as chemotherapy or 

radiotherapy for cancer treatments. The Z-scores 

obtained by SUV and SUL normal models will be 

helpful indices as statistical reference values in 

interpreting a single examination. 

D. Automated measurement of mandibular cortical width on 

dental panoramic radiographs by using mandibular 

contour model [23,24] 

Purpose: Clinical studies have shown that the 

mandibular cortical width (MCW) measured on 

dental panoramic radiographs (DPRs) is 

significantly correlated with bone mineral density 

(BMD) in the hip, lumbar spine and femoral neck. 

Therefore, identifying asymptomatic patients with 

osteoporosis through dental examinations may 

bring a supplemental benefit to the patients. 

However, most DPRs are used only for diagnosing 

dental conditions by dentists in their routine clinical 

work, and the condition of the mandibular cortex is 

generally not paid attention. The purpose of this 

study is to develop an automated MCW 

measurement method for establishing a possible 

secondary screening path via dental examination. 

Methodology overview: First, potential mandibular 

edges were detected by use of a mandibular mask 

and a modified Canny edge detector. The most 

similar mandibular contour model was selected 

from the training cases by the similarity score based 

on the distance transformation. The selected model 

was used as the initial model and fitted to the test 

case by an active contour method. The mental 

foramina positions of the fitted model, which were 

identified manually beforehand, were determined as 

the MCW measurement reference positions (Fig.6). 

Regions of interest were obtained by sampling the 

pixels from points along the mandibular contour 

around the reference positions to the perpendicular 

direction toward cavernous bone. Based on the line 

convergence analysis, the most suitable MCW 

measurement ranges and the border searching 

ranges were selected. Finally, the upper margins of 

the cortices were determined by the profile analysis. 

Results: The correlation coefficient between the 

manual measurement by a dental radiologist and the 

proposed method was 0.91. The area under the 

receiver operating characteristic curve for 

distinction between osteoporotic cases and control 

cases was 0.963.  

In the recent multi-clinic trials with cooperation 

 
Fig.6  Model searching and fitting for mandibular contour extraction 
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to a cloud-based teleradiology service, 457 cases 

from 7 dental clinics were tested. Out of these, 21 

cases were considered suspected osteoporosis. By 

use of our method, the sensitivity was 85.7% while 

the specificity was 81.0%. These suspected cases 

are likely unidentified in the routine dental 

examinations. The results indicate the potential 

utility of our CAD system for early diagnosis of 

osteoporosis. 

E.  Investigation of probabilistic models for differentiation of 

glaucoma from non-glaucoma eyes on retinal fundus 

images [25,27] 

Background: Retinal fundus photography is 

frequently and widely used examination for 

diagnostic record, longitudinal comparison, and 

screening of eye diseases. Because it can visualize 

blood vessels non-invasively, it is sometimes 

imaged during health check-ups. In reading retinal 

fundus images, physicians must look for various 

signs of abnormalities. However, the number of 

qualified professional is limited, and reading many 

screening images is time consuming. Therefore, for 

reducing physicians’ workloads and improving 

diagnostic efficiency, we have been investigating 

the computerized diagnosis and quantification 

systems for glaucoma, diabetic retinopathy, and 

hypertensive retinopathy. 

For diagnosis of glaucomatous eyes, we have 

previously proposed the automated scheme for 

measuring cup-to-disc ratio (CDR) [25], which is 

one of the indices considered by ophthalmologists 

in the clinical practice. However, determination of 

cup border is sometimes difficult because of the 

absence of clear edges, especially for the non-

glaucomatous eyes. To improve classification 

accuracy, we have investigated a new scheme that 

does not require segmentation of cup regions but 

uses probabilistic models of cup gradient 

information from training data. To our knowledge, 

no groups have investigated a model-based 

glaucomatous-disc differentiation scheme. 

Methodology overview: For this study, stereo 

fundus images were used. First, the location of 

optic disc is automatically detected, and 

subsequently, the disc region is segmented by using 

an active contour model [26]. From a stereo pair, 

parallax was determined by searching the local 

corresponding points, and the depth image was 

created [25]. Using training cases, we created 

models for glaucomatous and non-glaucomatous 

eyes by registering the disc border and averaging 

the depth gradient images. For registration, thin 

plate spline was applied to the sample points on the 

automatically segmented disc outlines. Figure 7 

shows the examples of glaucomatous and non-

glaucomatous disc images and their models [27]. In 

applying the models, similarity scores between the 

models and a test case were determined by 

multiplying the gradient image of the test case and 

the models. On the basis of the difference in the 

similarity scores, test cases were classified into 

glaucomatous or non-glaucomatous cases. 

Results: The method was tested with 87 cases, 

including 40 glaucomatous eyes. By using CDR 

determined by our previous method, the sensitivity 

was 90.0% with the specificity of 83.0%. Using the 

proposed method, the specificity was improved to 

97.9% at the same sensitivity level. Although 

automated measurement of CDR has some practical 

value because of its quantitativeness, the cup 

gradient information obtained by the proposed 

method can be useful in the diagnosis to 

supplement CDR. Further investigation is needed 

for improvement of both methods and combination 

of the schemes. 

F. CAD for detecting lacunar infarcts in MRI [28-31] 

Purpose: The detection of lacunar infarcts is 

important because their presence indicates an 

increased risk of severe cerebral infarction. 

However, accurate identification is often hindered 

by the difficulty in distinguishing between lacunar 

infarcts and enlarged Virchow-Robin (VR) spaces. 

Therefore, we have developed CAD schemes for 

the detection of lacunar infarcts [28-31]. An 

observer study was also conducted to evaluate the 

performance of radiologists without and with use of 

the CAD scheme [28]. The mean area under the 

 
(a)                        (b)                         (c)                      (d) 

Fig.7  Examples of depth gradient images and their models. (a) 
glaucomatous eye, (b) glaucomatous model, (c) non-glaucomatous 

eye, and (d) non-glaucomatous model 
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ROC curves without and with computer output 

were 0.891 and 0.937, respectively. Therefore, we 

believe that the CAD scheme could improve the 

accuracy of radiologists’ performance in the 

detection of lacunar infarcts. In the observer study, 

we realized that (1) some FPs due to enlarged VR 

spaces detected by the computer were difficult for 

radiologists to distinguish from lacunar infarcts. 

These FPs were the main sources to the detrimental 

effects of the CAD scheme. (2)  The clear FPs had 

an impact on the reliability of the result of the 

computer. The purpose of this study is to improve 

our CAD scheme for the clinical application. 

Methodology overview: (1) Lacunar infarcts were 

often detected in basal ganglion, optic thalamus, 

and cerebral deep white matter, whereas enlarged 

VR spaces were symmetrically detected in the 

lower third of basal ganglion. Therefore, we used 

anatomical location features for distinguishing 

between lacunar infarcts and enlarged VR spaces 

[29]. (2) We improved our CAD scheme for 

detection of lacunar infarcts by using template 

matching techniques in order to eliminate clear FPs 

such as a part of cerebral ventricle and a part of 

cerebral sulcus [30, 31]. 

Results: (1) The area under ROC curve for 

distinction between lacunar infarcts and enlarged 

VR spaces increased from 0.89 (without anatomical 

location features) to 0.93 (with anatomical location 

features). (2) By using AdaBoost template matching 

technique, 52.9% of FPs was eliminated while 

keeping the same sensitivity. The final sensitivity of 

the detection of lacunar infarcts was 96.8% with 

0.33 FPs per slice. 

 

III.  CONCLUSIONS 

Our progresses for anatomical model 

construction and applications based on 

multimodality medical images were described. We 

developed a universal solution for automatic organ 

and tissue segmentations and confirmed its 

usefulness and efficiency by applying to 18 kinds of 

organ localization and 9 kinds of organ regions 

based on more than 1000 CT cases. We also 

accomplished the muscle region segmentations by 

using shape models that had not been reported 

before. Those works are beneficial to the CAD 

developments by providing a possible way to 

recognize a number of anatomical structures 

quickly and automatically on CT images. 

We also developed a whole body probabilistic 

model to show the metabolic activities of the 

normal organs and tissues based on FDG-PET 

images. This work showed the potential possibility 

of our consideration for detecting the lesions by 

comparing the patient image to a normal human 

body model. The proposition was made by our 

group for solving the problem of the multi-lesion 

detection in multi-organs.  

Our model constructions and applications were 

also successfully applied to many CAD systems on 

retinal fundus images, dental panoramic 

radiographs, and MRI for supporting different 

lesion detection and classifications. As many other 

applications in  author’s group, different models 

were developed for pulmonary emphysema 

classifications on CT images [13, 14], lung nodule 

detection system based on CT and PET [32-34], 

distortion detection on mammograms [35], 

gastrocnemius muscle measurements on ultrasound 

images [36, 37], similarity-based CAD for breast 

mass diagnosis on mammograms [38, 39], and liver 

cirrhosis diagnosis [40-42]. The performance and 

usefulness of those models were confirmed by the 

promising results and published in many books and 

journals [44-50].  

Our research group was collaborated with several 

research groups of the same research project. 

Especially, we have been working together with the 

Kido Lab. of Yamaguchi University and shared the 

image database and source codes of the programs 

each other for shape model constructions. The 

novel results of these research works have been 

presented in [11, 12, 43]. 
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