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ABSTRACT  

This paper describes a universal approach to automatic segmentation of different internal organ and tissue regions in 
three-dimensional (3D) computerized tomography (CT) scans. The proposed approach combines object localization, a 
probabilistic atlas, and 3D GrabCut techniques to achieve automatic and quick segmentation. The proposed method first 
detects a tight 3D bounding box that contains the target organ region in CT images and then estimates the prior of each 
pixel inside the bounding box belonging to the organ region or background based on a dynamically generated 
probabilistic atlas. Finally, the target organ region is separated from the background by using an improved 3D GrabCut 
algorithm. A machine-learning method is used to train a detector to localize the 3D bounding box of the target organ 
using template matching on a selected feature space. A content-based image retrieval method is used for online 
generation of a patient-specific probabilistic atlas for the target organ based on a database. A 3D GrabCut algorithm is 
used for final organ segmentation by iteratively estimating the CT number distributions of the target organ and 
backgrounds using a graph-cuts algorithm. We applied this approach to localize and segment twelve major organ and 
tissue regions independently based on a database that includes 1300 torso CT scans. In our experiments, we randomly 
selected numerous CT scans and manually input nine principal types of inner organ regions for performance evaluation. 
Preliminary results showed the feasibility and efficiency of the proposed approach for addressing automatic organ 
segmentation issues on CT images. 

Keywords: Torso CT images, automatic organ segmentation, organ localization, 3D GrabCut.  

1. INTRODUCTION 
Medical imaging devices such as computerized tomography (CT) and magnetic resonance (MR) scanners have been 

widely used in clinical medicine to support diagnosis, surgery, and therapy. Such devices can generate substantial image 
data quickly and enable visualization of detailed three-dimensional (3D) information regarding the interior of the human 
body. However, doctors need time and experience with the interpretation of such image data using a screen or monitor, 
effective image analysis algorithms, and software tools to increase efficiency and accuracy substantially and to reduce 
tedium and oversights during CT image interpretation. Automatic segmentation of principal inner organs and tissues is 
necessary as a basic component of medical imaging systems.  Although many research studies have been proposed for 
extracting different target organ regions in 3D medical scans, automatic organ segmentations are still challenging owing 
to image noise, artifacts, gray-level inhomogeneity, and wide variation in organ appearance. 

A universal process of automatic segmentation for a wide variety of organs can be considered as a combination of 
“object detection” and “foreground/background separation.” Object detection recognizes the target location on the image 
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space and outputs a minimum bounding box that tightly covers the organ region. Some ideas [1, 2] that had been applied 
successfully to face detection in computer vision research have been improved and used for organ localizations in CT 
images [3-8].  That progress indicated the possibility that locations of major organs can be detected correctly in 3D CT 
images. In contrast, foreground/background separation aims to determine the contour of the target organ region. 
Although the organ contours appear directly on images as local edge information, the traditional edge detection method 
was not sufficient for performing the foreground/background separation task on medical images owing to poor image 
contrast and ambiguity between the target organ and surrounding tissue. Some global information, such as the organ 
shape, inside/outside intensity distributions, is needed to assist in foreground/background separation. In order to balance 
local edge and global information, a cost function that includes both local and global information was defined and used 
to determine the best solution for contour detection. The graph cuts algorithm is a typical algorithm for performing this 
type of task [9]. In order to reduce the number of manual interactions (showing some foreground and background 
landmarks required by graph cuts), an iterated graph cuts algorithm, GrabCut, that requires only a bounding box of the 
target as the initialization is presented in [10]. GrabCut is a semi-automatic segmentation method, but it has the potential 
to become a fully automatic process by incorporating the object-detection result as a pre-processing step. As far as we 
know, most GrabCut applications have focused on segmentation in two-dimensional (2D) nature images, with no 
previous work reported for organ segmentation in 3D CT images.     

In this paper, we propose an approach that can automatically segment inner organ and tissue regions in torso CT 
images. We aimed to use a simple method to deal with different kinds of inner organ segmentation issues generally and 
adapt the method to real clinical images generated by different CT scanners, including non-contrast and contrast-
enhanced, for normal and abnormal cases. The basic idea of this approach is to combine object detection and the 
improved GrabCut algorithm based on a probabilistic organ atlas that we developed for supporting organ segmentation in 
our previous work [11]. 

2. METHODS 
2.1 Outline 

The process flow of the proposed approach is shown in Fig. 1. As described in the previous section, we divided the 
automatic organ segmentation process into two parts – (1) organ localization and (2) organ/background separation – and 
used these parts to achieve success and accuracy, respectively, in segmentation. The two parts were designed separately 
and independently of the target organs, and they were executed sequentially during the segmentation process. The details 
of each part are described in the following sections. 

 
 

Fig.1. Process flow of the proposed approach for segmenting inner organs in a 3D CT scan. 
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In this work, 3D organ localization is regarded as the detection of several 2D crossed slices of the target organ and 
voting to select the final organ location on the basis of the detected slices. The processing flow of organ localization is 
shown in Fig. 2.  An inner organ region in a 3D CT scan is constructed using a series of consecutive 2D slices along a 
given direction (x, y, z or other orientation). The appearance of an organ in each 2D slice is highly correlated with and 
similar to its appearance in neighboring slices. Our assumption was that the partial appearances of an inner organ in 2D 
slices along the same direction are similar and can be recognized by a single 2D detector. Here, we only required a 
“weak” 2D detector, which may have optimal balance between the false positive (FP) and true positive (TP) rates, 
enhancing both efficiency and quality. This is the advantage of the traditional ensemble-learning approach. The later 
major voting step is used to further reduce FP rate and make a correct decision. 

After 2D detection in a CT scan, we obtained a number of 2D bounding boxes (TP) that tightly enveloped the target 
organ from different directions with many FPs lacking any relationship to the target organ regions. Based on the 
tendency that the distribution of FPs centers inherently on one location but the distribution of FPs does not, we used a 
majority-voting technique to distinguish and delete FPs in 2D detection results. Finally, the underlying 3D MDR was 
estimated using the corners of the detected 2D bounding rectangles [8].  Compared to our previous work [12], this work 
increased the number of directions for 2D slice detection from three to twelve, thereby achieving higher robustness and 
accuracy in the final 3D localization results in the voting stage.  

2.3   Organ and background separation using 3D GrabCut   

Target organ segmentation can be achieved using foreground/background separation within the bounding box. We 
followed the GrabCut procedure, which had been successfully used for foreground/background separation on nature 
images [10]. To adapt this procedure to the organ segmentation tasks in 3D CT images, we expanded the Grab-Cut 
algorithm from 2D to 3D and improved the original method by combining it with the probabilistic atlas that had been 
presented in our previous work [11] to improve segmentation performance.  

The original GrabCut was an interactive foreground extraction method based on iterated graph cuts.  Compared to 
graph cuts segmentation [9], GrabCut required only a bounding box of the foreground of the image for initialization and 
greatly reduced the need for user interaction. Because the bounding box of a target organ can be detected automatically 
from CT images in this work, we combined organ localization with 3D GrabCut to achieve target-free automatic 
segmentation in CT images.  

The graph cuts approach (the basis for GrabCut) addresses foreground separation in an image I by minimizing a pre-
defined energy function E. The global minimum of the defined energy function E can be expected to yield a good 
segmentation result. Generally, a good segmentation result S is considered to be one in which foreground and 
background image intensity histograms (shown by a model with parameter P) are coherent and reflect a tendency toward 
object solidity. This is captured by an energy function of the form ݏ)ܧ, , ݅) = U(s, p, i) + V(p, i)                       ---- (1) 

Here, U is the approximate accuracy of the result S relative to the image I with model parameters P, and V is a 
smoothness value that encourages coherence in foreground or background regions with similar gray levels. GrabCut uses 
a Gaussian mixture model (GMM) that shows gray-level foreground and background histograms of an image. Intuitively, 
U reflects the likelihood of the gray level on each pixel belonging to foreground or background, and V relates to the 
image gradients. Minimizing E leads to a separation between foreground and background that satisfies the conditions 
that the gray-level histogram can be represented well by the GMM and that the smoothness was preserved in both 
foreground and background regions. Details are provided in [10].  

The drawback of the original GrabCut method for organ segmentation in CT images is that the difference in the CT 
number distributions between organ and background is very small. For example, abdominal organs such as liver, spleen, 
kidney, and muscles have similar CT numbers, and most such organs are connected without an explicit contour 
separating them completely in CT images. This fact causes difficulty for GMM learning and for predicting the likelihood 
of distinguishing the organ region from the background in CT images. 

This work improved the GrabCut method by adding a prior to show the target organ region within the bounding box 
during the separation process. Instead of the likelihood U in Eq. 1, we introduce a posterior probability U’ based on 
Bayes' theorem, as shown in the following formula:   ܷᇱ(ݏ, , ݅) = ,ݏ)ܷ , ݅) 	× ,ݏ)ݎܲ	 ݅)                     ---- (2) 
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90%, respectively, and the rates for pancreas and gallbladder were 82% and 84%, respectively. These results show that 
the proposed approach can perform localization tasks successfully in over 90% of CT cases, except for two types of 
organs. The failure of the localization for pancreas and gallbladder was due to poor performance of the trained 2D 
detectors. This problem was caused by the smaller sample number (smaller volume in 3D) and larger variances in those 
two organs in contrast to the other organs during the training stage. For the quantitative evaluation, the distance from the 
detected center position of the target organs was less than 50 voxels in most CT cases, with modes ranging from 10 to 20 
voxels. The histograms of the difference in volume for the most organs were distributed mostly between -20% and 20%, 
with the modes near zero except for the bladder and liver. This evaluation result showed that the proposed approach can 
find the center position approximately and determine the size of the bounding rectangle of the target organ regions. 
However, for cases where the target organ had a large variance in the volume (bladder) or an asymmetrical shape (liver), 
the accuracy of the detected bounding rectangle needs to be improved.   

The average values of the Jaccard indices for the segmentation results of each organ were distributed from 0.8 to 0.9. 
Preliminary results showed the usefulness and efficiency of the proposed method for segmenting massive organs in CT 
images. Compared to the original GrabCut method, which produced Jaccard indices ranging from 0.6 to 0.7, the 
proposed method improved the accuracy of the segmentation results for every type of organ. This improvement resulted 
from the probabilistic atlas, which introduced the spatial prior of the organs for supporting the segmentation process.  On 
the other hand, the proposed method was unsuccessful in segmenting some digestive organs, such as stomach, pancreas, 
and rectum. This problem was caused by the large variances of CT number distributions and shapes for organ regions 
that cannot be handled by GMM learning and probabilistic atlas. Therefore, the cost function defined in Eq. 1 must be 
changed or expanded to adapt to digestive organ segmentations in non-contrast CT images.  

In conclusion, we proposed a universal approach that can be used to segment major organs and tissues automatically 
in 3D CT scans. This approach was applied to nine types of organ regions, and its efficiency and accuracy were validated 
using real clinical CT scans.  
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