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Abstract The shapes of the inner organs are important

information for medical image analysis. Statistical shape

modeling provides a way of quantifying and measuring

shape variations of the inner organs in different patients. In

this study, we developed a universal scheme that can be

used for building the statistical shape models for different

inner organs efficiently. This scheme combines the tradi-

tional point distribution modeling with a group-wise opti-

mization method based on a measure called minimum

description length to provide a practical means for 3D

organ shape modeling. In experiments, the proposed

scheme was applied to the building of five statistical shape

models for hearts, livers, spleens, and right and left kidneys

by use of 50 cases of 3D torso CT images. The perfor-

mance of these models was evaluated by three measures:

model compactness, model generalization, and model

specificity. The experimental results showed that the con-

structed shape models have good ‘‘compactness’’ and

satisfied the ‘‘generalization’’ performance for different

organ shape representations; however, the ‘‘specificity’’ of

these models should be improved in the future.

Keywords CT images � 3D organ shapes � Statistical

shape model � Point distribution model � Minimum

description length

1 Introduction

The shape information on anatomic structures plays a signif-

icant role in medical image analysis. Statistical shape mod-

eling can provide an effective way of handling the shape

information by quantitatively describing the mean and possi-

ble variations of the different shapes in an observed dataset.

This function of the shape model makes it possible to compare

the organ shapes on different medical images objectively, and

it has been applied directly to image diagnosis for detecting

subtle shape changes of anatomic structures. For example,

shape models were used for distinguishing the subtle differ-

ences in corpus-callosum shapes between schizophrenia

patients and normal subjects [1], detecting and visualizing

colonic polyps in CT colonography [2, 3], and analyzing

mammographic masses [4]. In another application, shape

modeling has been used widely to support region segmenta-

tions on medical images. In this purpose, the shape model is

used as a shape prior or constraint for the target organ con-

tours, and it guides the segmentation process to output such a

desired final result. Much research work has been done on

organ segmentation by use of shape models; a review of this

work can be found in [5]. All of this previous work shows the

usefulness of shape models for medical image analysis.

Several methods for statistic shape modeling such as

point distribution models (PDMs) [6], m-rep and SPHARMs
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[16, 17] had been reported. The PDM is a major method that

has been used widely during medical image segmentations

[5–7]. The basic idea of the PDM is to describe an organ

shape by a number of ordered landmarks (LMs) and make a

statistical analysis (finding the mean and variation of a group

of LMs) based on a set of shape instances. Although the

PDM proved to be useful and efficient for segmentation

methods [5], the construction of a PDM still retained some

difficulties, for example, how to decide correspondence of

the LMs on different shape instances [6]. In fact, most

related work treated these difficulties empirically and used

in-house methods to construct a shape model for a special

organ or purpose (a review of this work can be found in [5]).

On the other hand, constructing statistic shape models needs

a long time for data preparation and much technical

knowledge. Therefore, a universal scheme is desired for

statistical shape modeling of organ shapes, and statistical

shape models for different organs that can be used directly

are expected by the developments of medical image ana-

lysis. As far as we know, no shape model for an inner organ

had been made available for public use, and performance

evaluations of shape models for different kinds of organs on

CT images still need to be done.

The motivation for this research was to develop a system

which can generally construct statistical shape models for

different target organs based on CT images and distribute

the constructed models for other researchers. In our pre-

vious works [8, 9], we discussed and compared different

methods for statistical modeling and confirmed that PDM

was the most suitable approach for our purpose that

focused on organ segmentation and lesion detection [8].

We also implemented an initial software package and

investigated its correctness [9]. In this paper, we integrate

our previous work and propose a universal scheme, which

we apply to building statistical shape models for different

organs by using torso CT images. Our scheme uses the

points (landmarks) as the basic format to present each

individual shape surface and uses a group-wise optimiza-

tion method called minimum description length (MDL) to

decide on the landmark correspondence between different

shape instances. We describe the details of the proposed

scheme and place emphasis on the model performance

evaluations for different kinds of organ regions that are

required by the applications. The paper is organized as

follows: First, we give an overview of the scheme for the

shape model construction and describe the details of the

main processing steps in Sect. 2. In Sect. 3, we give the

criteria for the model performance evaluations. This

scheme was applied to the shape model constructions for

five kinds of inner organs, and the experimental details are

given in Sect. 4. The results with the discussion about the

performance of the constructed shape models are given in

Sect. 5. Finally, a conclusion is presented in Sect. 6.

2 Methods

In this section, we first introduce the PDM which is the

basic solution for statistical shape modeling and then give

an overview of the proposed system for constructing a 3D

PDM for organ regions based on CT images.

2.1 Point distribution modeling for 3D organ regions

A statistical shape model is designed for presenting the

mean geometry of a specific organ shape and some statis-

tical modes of the shape variation from a training set of the

shape instances. The PDM is a general shape modeling

approach that relies on the landmark points on the target

organ contour to present the organ shapes [6]. Given a

training set (n annotated organ regions), we can get

x1,…,xn vectors from each set. Each x ¼ ðx1; y1;

z1; . . .; xl; yl; zlÞ has l aligned landmarks with the image

coordinates x, y, z and sufficiently approximates the

geometry of the shape of the corresponding organ region.

Under the condition that landmarks with the same index in

different shape instances x represent the same anatomic

location, the mean shape and shape variation can be cal-

culated by the following steps:

(1) Compute the mean shape �x.

�x ¼ 1

n

Xn

i¼1

xi ð1Þ

(2) Compute the shape variation M:

M ¼ 1

n� 1

Xn

i¼1

ðxi � �xÞðxi � �xÞT ð2Þ

(3) Using singular value decomposition (SVD) to

decompose the M as

M ¼ U
X

UT ð3Þ

where U is a matrix whose column vectors represent the set

of orthogonal modes (eigenvectors ui) of shape variation

M, and R is a diagonal matrix of corresponding singular

values (
ffiffiffiffi
ki

p
, where kiare the eigenvalues)

(4) An estimate of a novel shape, y, of the same organ

can be represented by the mean shape �x and a line com-

bination of k (1 B k B n) principal modes ui with the

coefficients ai as

y ffi �xþ
Xk

i¼1

aiui: ð4Þ

In this way, a shape instance y can be quantitatively

represented or analyzed based on a set of coefficients ai,

where ai is the parameter of PDMs and can be calculated

by the inner product of the y and ui. We can generate a new

shape y by adjusting the parameter ai which is governed by
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the underlying probability distribution of the training

shapes. Such a probability distribution can usually be

assumed to be a Gaussian distribution; thus, ai is set to the

values within the range of ½�3
ffiffiffiffi
ki

p
; 3

ffiffiffiffi
ki

p
� in order to make

sure that the new generated shape is acceptable.

2.2 System overview

In this research, we developed a system that can be used

generally for construction of statistical shape models for

presenting the different organ surfaces based on the PDM

approach. An overview of the proposed system is shown in

Fig. 1. The input of the system is a training set of 3D CT

images, and the output is a statistical shape model for a

specific organ region.

Our system provides a graphic user interface to help

operators to segment the target organ region in each CT

image. We developed a semi-automatic method for this

interface by using 2D manual seed-point inputting with a

3D organ extraction approach [10]. After the organ shapes

are obtained from the CT images, the system automatically

constructs a statistical shape model to present the shapes of

the extracted organs. The processing flow of the system

includes four steps, as shown in Fig. 1. Through these

steps, the organ regions on CT images are transferred from

voxel-based regions to mesh-based surfaces first, and then,

vertices of the meshes are used for construction of the

PDM that presents the organ shapes in all of the inputted

CT images. The details of the processing procedure in each

step are described in the following sections.

2.2.1 Semi-automatic organ region segmentation

The target organ region in each CT image was segmented

by use of a graphic interface that was developed by our

research group [10]. Instead of manually inputting the

contour of the target organ region, our system only requires

the operator to indicate the coordinates of some pixels

(seed points) inside and outside the organ region on the 2D

images, and the computer automatically segments the 3D

target organ region by using the positions of these seed

points. The details of the algorithms for organ segmenta-

tions used in this interface can be found in [10].

2.2.2 Organ shape presentation by use of surface

parameterizations

The organ region is represented by a group of voxels in CT

images after the segmentation process. The shape is defined

by the contour of the organ region that appears as a closed

three-dimensional surface. Instead of using of all of the

voxels of the contour, only a number of landmarks that

approximate the global shape smoothly are selected and

used for shape modeling. In this system, we generate a

number of triangle meshes from the contour voxels by first

using a matching cubes algorithm [11], we then smooth the

mesh surface and merge the adjacent meshes iteratively to

reduce the vortex number of the meshes to a pre-defined

constant k by using the Visualization ToolKit [12]. Finally,

the organ shape that originally appears as all of the contour

voxels on CT images is represented by a comparatively

lesser number of vertices of the surface meshes.

2.2.3 Landmark arrangements by use of the MDL method

Given n shape instances of training samples, each shape is

represented by vertices of meshes obtained in the previous

step. In order to construct the statistical shape models, we

need to seek a set of landmarks (coordinates of l points)

xi ði ¼ 1; 2; . . .; lÞ; located at the corresponding parts on

these n shapes. The determination of the corresponding

landmarks can be generalized as a problem of shape

alignment, which eliminates spatial differences of shapes

caused by pose parameters (translation, orientation, and

scaling) in different CT cases.

In this system, an MDL-based method [13] has been

used for accomplishing the landmark arrangements.

Because the landmarks of a group of shapes are determined

simultaneously, the MDL method is also called a group-

wise based method. The intent of the MDL method is to

find a set of landmarks which lead to statistical shape

models describing the training samples as efficiently as

possible. The efficiency of the model is defined by an

objective function of the MDL, D, that is calculated based

on the eigenvalues ki in Eq. (3). The best landmark cor-

respondence over all of the training samples can be

obtained by minimizing of D to lead a compact model for

describing all of the shapes in the training samples [13].

Shape instances by individual 
mesh presentations

Shape instances by individual 
mesh presentations

Inner organ regions presented 
by binary masks 

Inner organ regions presented 
by binary masks 

Shape instance by an individual 
mesh presentation

(1) Semi-automatic organ region 
segmentations

3D CT images

Inner organ region represented 
by a binary mask 

Shape instances by mesh presentations 
with shape correspondence

A statistical shape model

(2) Organ shape presentation by 
using surface parameterizations

(3) Landmark arrangements by
MDL method

(4) PDM generation by using 
principal-component analysis

Fig. 1 Processing flow of shape modeling
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In practice, we project all meshes to a unit spherical

surface based on the conformal mapping method to remove

the differences in translation and scaling among shape

instances first, and then rotating those meshes on the

spherical surface to eliminate orientation differences by

minimizing the MDL’s function D [13]. A gradient-descent

optimization method [14] is used for seeking the location

of the minimum value of the function D quickly.

2.2.4 PDM generation by use of principal component

analysis

When the landmarks xi of the n training shapes are deter-

mined, a PDM that presents the average and possible

variations of the organ shapes can be generated by use of

the traditional approach described in Eqs. (1)–(3), based on

principal component analysis.

3 Performance evaluation for statistical shape models

The performance of a shape model was measured by three

criteria: compactness, generalization, and specificity, that

reflect the performance in being easy to handle, and having

shape expression capability and correctness for shape

predictions for a statistical shape model [13].

Compactness shows the model efficiency that aims to

use a smaller number of model parameters to handle larger

variations of the shape instances. The compactness C is

defined as

C ¼
Xk

i¼1

ki: ð5Þ

Here, k is the number of principal modes ui used in

statistical shape models, and ki is an eigenvalue from

Eq. (3). Intuitively, a compact model is more useful for

practical applications that desire to handle all of the shape

instances by a few parameters.

Generalization is the model ability for presenting the

novel shape instances of the target organ that are not used

during model construction. The generalization ability G is

defined as the cumulative difference between the novel

shape instance and its shape representation based the shape

model. If we have n shape instances for testing the model

generalization by using a leave-one-out method and each

shape instance is presented by a landmark set x, then G can

be written as

G ¼ 1

N � 1

Xn�1

i¼1

xi � yik k: ð6Þ

Here, yi is the shape representation of xi that calculated

by Eq. (4) based on a shape model constructed by the other

n-1 shape instances. Intuitively, a model that has a smaller

G can present a new shape instance more accurately.

Specificity measures the validation of the shape instan-

ces that are presented by the model. The specificity can be

calculated by randomly generating a number of shapes

from the model and measuring the differences between

each generated shape instance with its nearest neighbor (a

shape instance that has the shortest Euclidean distance to a

referred shape) in the model space that is used for model

construction. If we generate a number of instances xi

(i = 1,…,C) on a model space and each instance xi can find

a nearest neighbor x0i that is really used for model con-

struction, the specificity S can be defined as

S ¼ 1

C

XC

i¼1

xi � x0i
�� ��: ð7Þ

Intuitively, a smaller S means that an arbitrary predic-

tion based on a shape model will generate a shape that

looks like one of the shape instances in the training set.

An ideal shape model should be compact, have the

ability to present all of the validated shape instances cor-

rectly (smaller G), and should not deliver any invalidated

shape instances (smaller S). Measuring such performances

for a constructed shape model is important and required by

the developments of the applications on CT images.

4 Experiment

This system was applied to the shape model construction

for different inner organs by use of 3D CT images. Five

kinds of organ regions, including hearts, livers, spleens,

and right and left kidneys, were used as the targets. We

randomly selected 50 patient cases (CT images) with nor-

mal organ shapes as the training set. Each CT image

covered the whole human torso by 512 9 512 9

798–1,104 voxels with an image resolution of 0.625 (mm)

in three directions. A 16-detector CT scanner (Lightspeed

16; GE Healthcare, Milwaukee, WI, USA) with a fixed

tube voltage of 120 kVp and an automatic tube current

modulation program (3D mA Modulation; GE Healthcare)

was used for generating each CT scan. The CT parameters

were set as follows: collimation, 1.25 mm; detector con-

figuration, 16 detectors with 1.25 mm section thickness

(16 9 1.25 mm); noise index, 9.8; table feed, 27.5 mm per

rotation; pitch, 1.37; 75 cm craniocaudal scan range;

32 cm field of view; 0.5 s gantry rotation time; and 14.2 s

scan acquisition time. Breath-hold CT scans were obtained

and CT images were reconstructed at 1.25-mm-thickness

sections, by use of a standard reconstruction algorithm.

Five organ regions in each CT image were extracted

manually based on mutual consent of the first and second

280 X. Zhou et al.



authors under the instructions of a medical expert (author

5). Figure 2 shows an example of the 3D views of the

organ surfaces of five target organs in one case.

The shape model constructions were carried out for each

organ independently. The number of shape instances n for

model training was 50. The number of landmarks l for the

final PDMs was fixed at 2,562 empirically, based on the

expressiveness of these LMs for different organ shapes.

The mean shapes and their variations for each target organ

are shown in Fig. 3. The constructed models were evalu-

ated by measurement of the performance of the compact-

ness, generalization, and specificity. The evaluation results

are indicated in Fig. 4.

5 Results and discussions

We confirmed that the proposed system can construct sta-

tistical shape models for presenting the typical shapes of

principal organs. The mean shape for each organ was

reasonable under the anatomic definition, as shown in the

middle column of Fig. 3. By changes in the values on each

mode, the constructed shape model can deliver a sequence

of shape instances.An example of the shape variances by

changing the value of the first mode were shown on the left

and right sides of Fig. 3. The heart shapes showed a larger

variance, and the shape variance of the liver was relatively

smaller. Those shape variances should be affected by the

patient individual differences and curvature distributions of

different organ surfaces. These results showed that the

proposed system can be used for constructions of statistical

shape models for the principal inner organs based on 3D

CT images.

As shown in Fig. 4, we found that the values of com-

pactness, generalization, and specificity of the shape

models varied largely within 1–10 modes, and there was

almost no change beyond 20 modes. Actually, most

applications based on shape models cannot handle more

than 10 modes for parameter optimization; the compact-

ness of the constructed models is suitable for practical

applications.

For the evaluation results of the generalization (Fig. 4c),

we confirmed that the minimum values of G of the models

were distributed around 20–40 mm (a cumulative error of

2,562 landmarks) for different organs. Considering that the

spatial resolution of the CT images was 0.625 mm, a dis-

placement with an average around 0.01–0.02 voxel

occurred in each landmark between the surfaces delivered

from the original CT images and the representation of the

models. This accuracy should be high enough for sup-

porting the automatic organ segmentation that was the

main application of the organ shape modeling.

Heart Liver Spleen Left and right kidneys

Fig. 2 Extraction results for

five organ surfaces in a CT case

Heart

Liver

Spleen

Left kidney

Right kidney

Mean shape

Fig. 3 Shape instances delivered from the statistical shape models

for five kinds of organs (shapes on left and right sides are generated

by Eq. 4 by using parameters k = 1; a1 = ± 0.5r; r =
ffiffiffiffiffi
k1

p
)
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For the specificity, we found that the performance of the

models was not good enough. As shown in Fig. 4b, the

errors (S defined in Eq. 7) were distributed from 300 to

450 mm. This result showed that the shapes delivered

randomly from the models had a large difference to the

instances in the training set. Some of those shapes gener-

ated by the models were also judged as inadequate upon

inspection by the authors.

The performance of the specificity was affected by

landmark correspondence, which is the most important

part of shape modeling. The MDL method was used for

solving the correspondence, based on the implicit

inference that the compact model is the best one. This

consideration led to a compact model, but there is no

evidence to prove theoretically and explicitly that a

compact model will also provide a good correspondence

of the landmarks in anatomy, which may cause a worse

performance regarding specificity. This problem showed

that accuracy of the shape representation from the

anatomy aspect should be considered as a new measure

for evaluating the model performance in medical pur-

poses. Although a paper recently reported an improved

MDL method [15], it is still an open question how to fill

the gaps between the theory of a compact model in

MDL and anatomic correspondence of landmarks in

practice. In addition, how to balance all of the measures

(compactness, generalization, and specificity) during the

statistical shape modeling for different inner organs is

another question that remains for the future work.

6 Conclusion

In this research work, we proposed a system for con-

structing statistical shape models based on CT images. This

system was applied to 50 cases of torso CT images for

constructing five shape models for the heart, liver, spleen,

and right and left kidneys. The experimental results showed

that the proposed system can construct a compact model to

represent these organ shapes efficiently and correctly

compared to the original shapes on CT images. However,

the validity of the shapes that were delivered from the

models randomly was not good enough, and improvement

of the model specificity should be considered in future

work.
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