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Detection of Cerebrovascular Diseases
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15.1  INTRODUCTION

Recently, the concept of CAD has been expanded to the cere-
bral region. A screening system called the Brain Check-up is 
widely employed in Japan. A number of CAD schemes are 
being developed in Japan to assist radiologists in the early 
detection of cerebrovascular diseases at screening centers 
and hospitals (Arimura et  al. 2004, Hayashi et  al. 2003, 
Kobayashi et al. 2006, Uchiyama et al. 2005, 2007a, Yokoyama 
et al. 2007). Figure 15.1 shows the trend in leading causes of 
death in Japan. The number of cerebrovascular diseases has 
gradually decreased every year. However, it should be noted 
that the numbers of cases of subarachnoid hemorrhage 
(SAH) and cerebral infarction are on the increase. Therefore, 
it is important to reduce the incidence of these conditions. 
In this chapter, CAD schemes developed at Gifu University 
(Fujita et al. 2008) and observer performance studies are pre-
sented, with reference to related works and with an empha-
sis on potential clinical applications in the future. Subjects 
for these CAD schemes included in the following sections 
are (1) detection of intracranial unruptured aneurysms in 
magnetic resonance angiography (MRA), (2)  a new  view-
ing technique for the detection of unruptured aneurysms, 
(3) detection of arterial occlusion in MRA, (4) detection of 
lacunar infarcts in T1- and T2-weighted images, and (5) clas-
sification of lacunar infarcts and enlarged Virchow–Robin 
spaces in T1- and T2-weighted images.

15.2 � COMPUTERIZED DETECTION 
OF UNRUPTURED ANEURYSMS 
IN MR ANGIOGRAPHY

The detection of unruptured aneurysms in MRA studies is 
an important task because aneurysm rupture is the main 
cause of SAH, which is a serious disorder with high mortality 
and morbidity (Fogelholm et al. 1993). The rate of rupture of 

asymptomatic aneurysms has been estimated to be 1%–2% 
per year (Wardlaw and White 2000). However, it is often dif-
ficult and time consuming for radiologists to detect small 
aneurysms, and it may not be easy to detect even medium-
sized aneurysms in the MRA studies because of the overlap 
between an aneurysm and adjacent vessels on maximum-
intensity projection (MIP) images. Therefore, CAD schemes 
would be useful in assisting radiologists in detecting unrup-
tured aneurysms (Arimura et al. 2004, Hayashi et al. 2003, 
Kobayashi et al. 2006, Uchiyama et al. 2005).

15.2.1  Vessel Segmentation

Figure 15.2 shows the overall scheme used for the detection 
of unruptured aneurysms in MRA images (Uchiyama et al. 
2008a). The vessel region was segmented first to avoid false 
positives (FPs) located outside the vessel region. A linear gray-
level transformation was applied to the three-dimensional 
(3D) MRA image so that the minimum voxel value became 
zero, and voxels with values greater than the 99% margin 
depicted in a cumulative histogram were assigned a maxi-
mum value of 1024. After the linear gray-level transformation, 
the vessel regions were segmented from the background by 
using the gray-level thresholding method with an empirically 
selected threshold level of 700. Using this method, large vessel 
regions were successfully segmented. However, it is difficult 
to segment small vessels using this method because the voxel 
values in the small vessel regions are low. Therefore, a region-
growing technique was subsequently applied to segment the 
small vessel regions. The segmented large vessel regions were 
used as seed points, and the neighboring voxels with values 
greater than 500 were appended to the seed points.

Accurate segmentation of vessel regions on MRA images 
is an essential and often difficult task in the development 
of a CAD scheme. Gao et  al. (2011) have developed a fast, 
fully automatic segmentation algorithm for extracting the 
3D cerebral vessels in MRA images, based on statistical 
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Figure 15.1  (a) Trend in leading causes of death in Japan. Cerebrovascular diseases are the third leading cause of death. (b) Trend 
in deaths from cerebrovascular diseases in Japan. The numbers of subarachnoid hemorrhages and cerebral infarctions are increasing.

D
ow

nl
oa

de
d 

by
 [

C
hi

sa
ko

 M
ur

am
at

su
] 

at
 1

8:
53

 2
4 

M
ar

ch
 2

01
5 



15.2  Computerized Detection of Unruptured Aneurysms in MR Angiography 243

model analysis and improved curve evolution. Quantitative 
comparisons with 10 sets of manual segmentation results 
showed that the average volume sensitivity, average branch 
sensitivity, and average mean absolute distance error were 
93.6%, 95.98%, and 0.333 mm, respectively. By applying the 
algorithm to 200 clinical datasets from three hospitals, it 
has been demonstrated that the proposed algorithm can 
provide good-quality segmentation capable of extracting a 
vessel with a one-voxel diameter in less than 2 min.

15.2.2 � Initial Identification of 
Unruptured Aneurysms

For the enhancement of aneurysms, a 3D gradient concen-
tration (GC) filter was employed. This filter was designed to 
enhance the regions of a sphere by measuring the degree of 
convergence of the gradient vectors around a point of inter-
est, which is defined by

	
GC( ) cos .p

M
R

j= �1 � 	 (15.1)

Figure 15.3 illustrates GC filter. The output value of the GC 
filter at the point of interest p(x, y, z) was computed within 

the regions of a sphere with radius R at the center of p(x, y, z). 
The angle θj is the angle between the direction vector from 
p(x, y, z) to j(x, y, z) and the gradient direction vector located 
at j(x, y, z). M is the number of voxels when the gradient mag-
nitude located at j(x, y, z) was greater than zero. The gradient 
magnitude and gradient direction were determined by the 
first-order difference filter with a matrix size of 3 × 3 × 3. The 
output value of GC filter ranges from 0.0 to 1.0. If the candi-
date region is in spherical form, the GC filter takes a value 
of 1.0. For the initial identification of aneurysm candidates, 
the gray-level thresholding technique with a threshold level 
of 0.5 was applied to the image obtained using the GC filter. 
After thresholding, regions lager than 10 voxels were deter-
mined as the initial candidates.

Other investigator (Arimura et al. 2004) employed a 3D 
selective enhancement filter (Li et al. 2003) for the enhance-
ment of aneurysms. This filter can enhance objects of a spe-
cific shape (e.g., dot-like aneurysms) and suppress objects 
of other shapes (e.g., line-like vessels). For identifying initial 
candidates, multiple gray-level thresholding technique was 
applied to the dot-enhanced image processed using a selec-
tive multiscale enhancement filter.

15.2.3  Feature Extraction

The initially selected candidates included many FPs. To 
eliminate these FPs, features of shape and anatomical loca-
tion of each candidate region were determined. The shape 

Original 3D MRA image

Segmentation of vessel regions

Initial candidates based on GC filter

Global matching

Rigidity transformation

Location featuresShape features

Rule-based scheme

Quadratic discriminant analysis

Annotated aneurysm regions

Figure 15.2  Overall scheme for the detection of unruptured 
aneurysms in magnetic resonance angiography. (From Uchiyama, 
Y. et al., SPIE Proc., 6915, 69151Q-1, 2008a.)
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Figure 15.3  Illustration of gradient concentration filter.
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Detection of Cerebrovascular Diseases244

features were size, degree of sphericity, and mean and 
maximum values of the GC image. The size was given as the 
number of voxels in the initial candidate region and was 
considered a useful feature for eliminating FPs because the 
sizes of some FPs were either smaller or larger than those 
of the aneurysms. The degree of sphericity was defined by 
the fraction of the overlap volume of the candidate with a 
sphere having the same volume as the candidate. The mean 
and maximum values of the GC image were given as the 
mean and maximum values in the candidate region pro-
cessed by the GC filter. These features were also considered 
useful for distinguishing between vessels and aneurysms 
because some FPs were line-like or more irregular in com-
parison with the aneurysms.

Unruptured aneurysms were often detected in the ante-
rior communicating artery, branch points of the middle 
cerebral artery, and branch points between the internal 
carotid artery and the posterior communicating artery. 
Therefore, the anatomical location is an important piece 
of information for the detection of unruptured aneurysms. 
In order to obtain anatomical location features, a reference 
(normal) MRA image was selected. The vessel regions in 
the reference image were then semi-manually segmented 
for image registration. The segmented vessel regions in the 
target image were shifted to align with the reference image 
by using a global matching procedure and rigid transfor-
mation, which is described in Section 15.4.3. After the rigid 
transformation, the locations x, y, and z in the target image 
were shifted into common coordinates on the reference 
image, thereby providing anatomical location information.

Other investigators have proposed a number of image 
features for the elimination of FPs. For example, Arimura 
et al. (2006) have developed a shape-based difference image 
(SBDI) technique for extracting small protrusions or small 
aneurysms. The SBDI technique is based on the shape differ-
ence between an original segmented vessel and a vessel with 
a suppressed local change in thickness. The SBDI technique 
is useful for obtaining local changes in vessel thickness, 
that is, shape-based difference (SBD) regions, which could 
be small aneurysms in the case of true positives, but thin or 
very small regions in the case of FPs. Yang et al. (2011) used 
other features to reduce FPs, such as distance to the trunk, 
radius of the vessel, planeness, cylinder surface, Gaussian 
and mean curvature, and shape index.

15.2.4  False-Positive Reduction

Four shape features and three anatomical location features 
were obtained from the initial candidate regions. The rules 
in rule-based schemes were then set using these values. First, 
the maximum and minimum values of each of these seven 
features were obtained from all the aneurysms. All 14 cut-
off thresholds were determined on the basis of these values. 

The rule-based schemes were then used for the first step in 
the elimination of FPs; that is, when a candidate was located 
outside the range determined by the cutoff thresholds in the 
feature space, the candidate was considered as an FP. For 
further eliminating FPs, a quadratic discriminant analysis 
(QDA) was employed using the four shape features and three 
anatomical location features. The QDA generates a decision 
boundary that optimally partitions the feature space into 
two classes, that is, an aneurysm class and FP class. The 
decision boundary for the QDA was a quadratic surface 
given by a discriminant function. The output value of the 
discriminant function indicates the likelihood of the occur-
rence of the aneurysm. By changing the threshold level, the 
performance of the CAD scheme can be determined.

15.2.5 � Performance Evaluation for Detection 
of Unruptured Aneurysms

The database consisted of 100 MRA studies (72 normal 
and 28 abnormal) with 30 unruptured aneurysms (diam-
eter: 2.3–3.5  mm; mean: 2.8  mm). These MRA studies 
were acquired by using a 1.5 T magnetic image scanner. 
In the first step toward identifying the initial aneurysm 
candidate regions, 93.3% (28/30) aneurysms were accu-
rately detected, with 27.32 (2732/100) FPs per patient. This 
result indicates that the GC filter was useful in the detec-
tion of aneurysms because almost all the aneurysms were 
detected accurately. However, many FPs were also detected 
using this method. To eliminate FPs, the rule-based scheme 
and QDA with seven features were employed. The results 
revealed that CAD scheme achieved a sensitivity of 90.0% 
(27/30) with 1.52 (152/100) FPs per patient. Figure 15.4 
shows the free-response receiver operating characteristic 
(FROC) curves for the overall performance of the detec-
tion of aneurysms with and without location features. 
The graphs show that the number of FPs decreased from 
3.47 (without location features) to 1.52 (with location fea-
tures) while maintaining a sensitivity of 90.0%. This result 
indicates that the three location features were useful for 
distinguishing between aneurysms and FPs. Figure 15.5 
shows a prototype of the CAD scheme for the detection of 
unruptured aneurysms, where MIP images and volume 
rendering images can be displayed. In this case, the CAD 
scheme indicated two candidate regions containing an 
unruptured aneurysm.

15.3 � OBSERVER STUDY FOR DETECTION 
OF UNRUPTURED ANEURYSMS

Other investigators (Hirai et al. 2006, Kakeda et al. 2008) 
have carried out observer performance studies to ret-
rospectively evaluate the effect of CAD on radiologists’ 
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15.3  Observer Study for Detection of Unruptured Aneurysms 245

performance in the detection of intracranial aneurysms 
using MRA. Hirai et al. (2006) used 50 MIPs of MR angio-
grams in their study. The dataset included 50 patients, 22 
(age range, 43–86 years) with intracranial aneurysms and 
28 (age range, 32–80) without aneurysms. Fifteen radiolo-
gists, including eight neuroradiologists and seven general 

radiologists, participated in the observer performance 
test, which was carried out using a sequential test method. 
Each observer read the MR angiograms displayed on a 
monitor first without computer output and rated his or her 
confidence level in determining the presence or absence of 
an aneurysm. Next, the computer output, marked by circles 
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Figure 15.4  FROC curves for the overall performance of the CAD scheme in the detection of unruptured aneurysms with and without 
anatomical location features. (From Uchiyama, Y. et al., SPIE Proc., 6915, 69151Q-1, 2008a.)
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Figure 15.5  (See color insert.) Illustration of a prototype CAD scheme for the detection of unruptured aneurysms.
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Detection of Cerebrovascular Diseases246

that indicated potential aneurysms, was superimposed on 
the MR angiograms. The observer then viewed the image 
with the computer output and rated it again. The observ-
ers were allowed to select the direction of the MR angio-
grams and the magnification of the image on the monitor. 
The following information was provided to the observ-
ers: (a)  a description of the sequential test method used, 
(b) the presence of only one aneurysm in each patient, and 
(c) the type of aneurysm being either saccular or fusiform. 
The observers were blinded to the number of patients with 
aneurysms and the performance level of the CAD scheme. 
There was no limit on the reading time.

The observers’ performance without and with the com-
puter output was evaluated by receiver operating charac-
teristic (ROC) analysis. For all 15 observers, average area 
under the receiver operating characteristic curve (AUC) 
value for detection of aneurysms was increased signifi-
cantly from 0.931 to 0.983 (p = 0.001) with the computer 
output, as shown in Table 15.1. AUC values for general radi-
ologists and neuroradiologists increased from 0.894 to 0.983 
(p = 0.022) and from 0.963 to 0.984 (p = 0.014), respectively. 

The improvement in the performance of general radiolo-
gists in terms of the AUC value was much greater than that 
of neuroradiologists. These results indicate that the use of 
the CAD scheme helped to improve the performance of both 
neuroradiologists and general radiologists for the detection 
of intracranial aneurysms in MR angiograms.

15.4 � VIEWING TECHNIQUE FOR 
DETECTION OF UNRUPTURED 
ANEURYSMS

To facilitating the detection of small aneurysms by radiolo-
gists, Uchiyama et al. (2006) developed a new viewing tech-
nique termed a SelMIP image. This involved the generation 
of a new type of MIP image containing target vessel regions 
only, by manually selecting a desired cerebral artery from a 
list. By using a SelMIP image, the selected vessel region can 
be observed from various directions, and small aneurysms 
are easier to detect. For this technique, a new method was 
developed for the automated labeling of eight arteries in 
MRA studies.

15.4.1  Reference Image

For the automated labeling of eight arteries, a 3D reference 
image was used as a reference for the locations of the eight 
arteries to be segmented in all MRA studies. The eight cere-
bral arteries were prelabeled in the 3D reference image. These 
were the anterior cerebral artery (ACA), right middle cerebral 
artery (MCA), left MCA, right internal carotid artery (ICA), left 
ICA, right posterior cerebral artery (PCA), left PCA, and basilar 
artery (BA). Image registration was performed on the 3D refer-
ence image and an image to be classified, referred to as a target 
image, with the former kept unchanged. Figure 15.6 shows a 
representative target image and a reference image.

15.4.2  Global Matching

Global matching was used in initial image registration. 
As the locations of the corresponding vessel regions in the 
target image and the reference image are likely to be differ-
ent due to variations in patient positioning, registration of 
corresponding vessel regions is necessary. Segmentation 
of the vessel regions in a target image was performed by 
using the thresholding and region-growing techniques, as 
described in Section 15.2.1. The segmented vessel regions 
in the target image were then shifted to align with the 
reference image. The translation vector was defined so as 
to maximize the overlapping of the vessel regions in the 
target image and the reference image. By using the global 
matching technique, the corresponding vessel regions in 
the two images were brought close to each other.

TABLE 15.1 AUC VALUES FOR RADIOLOGISTS IN 
THE DETECTION OF INTRACRANIAL ANEURYSMS

Observers 

Without With 

CAD CAD 

Neuroradiologists

1 0.939 0.964 ↑
2 0.986 0.994 ↑
3 0.989 0.998 ↑
4 0.969 0.970 ↑
5 0.969 0.984 ↑
6 0.952 0.993 ↑
7 0.942 1.000 ↑
8 0.958 0.967 ↑
Mean 0.963 0.984 ↑
General radiologists

9 0.916 0.961 ↑
10 0.909 0.984 ↑
11 0.871 0.978 ↑
12 0.909 0.989 ↑
13 0.871 0.989 ↑
14 0.872 0.984 ↑
15 0.910 0.993 ↑
Mean 0.894 0.983 ↑
Overall 0.931 0.983 ↑
Source:	 Hirai, T. et al., Radiology, 237, 605, 2006.
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15.4.3 � Rigid Transformation 
of the Target Image

After the global matching procedure, the rigid transforma-
tion was used to achieve a more accurate matching between 
the target and reference images. A number of control points 
were predetermined in the reference image, and the tem-
plate matching method was used to determine the locations 
of the corresponding control points in the target image. In 
the template matching procedure, the normalized cross-
correlation value C(x, y, z) was used as a similarity measure. 
The normalized cross-correlation value C(x, y, z) between 
the template A(i, j, k) centered at a predetermined feature 
point (i, j, k)  on the reference image and a region B(x + i, y + j, 
z + k) located at (x + i, y + j, z + k) on the target image that 
corresponds to the feature point (i, j, k) is given by

	

C x y z
IJK

A i j k a B x i y j z k b

k

K

j

J

i

I

( , , )

, , , ,

=

( )�{ } + + +( )�{ }
= = =
� � �1

1 1 1

�� �A B

,		

(15.2)

where a   and b   are mean voxel values of template A(i, j,  k) 
and region B(x + i, y + j, z + k), respectively, and σA and σB 
are the corresponding standard deviations. The size of the 
template I × J × K was set to be 21 × 21 × 21. The normalized 
cross-correlation value indicates the resemblance between 
the candidate region and the template. If the images A and 
B are identical, C will take on the value 1.0. Twelve tem-
plates were located manually in the cerebral region of the 
reference image. Figure 15.7a shows the center points of 
the 12  templates in black dots. The size of search region 

associated with each template in the target image was 
41 × 41 × 41. Figure 15.7b shows the 12 corresponding points 
found in the target image using the template matching 
method. A set of corresponding control points determined 
by the template matching method were used to determine 
the translation and rotation vectors, T and R, between the 
two images for the rigid transformation. If P and p repre-
sent the corresponding points in the reference and target 
images, respectively, assuming the coordinates of the cor-
responding points in the images after global matching are 
{pi = (xi, yi, zi), Pi = (Xi, Yi, Zi):i = 1,…,12}, the relation between 
the corresponding points in the images can be written as

	 P Rp Ti i= + . 	 (15.3)

The translation vector T and the rotation vector R can be 
determined by minimizing

	
E P Rp T

i

i i
2

1

12
2= � +( )

=
� . 	 (15.4)

15.4.4  Classification of Cerebral Arteries

After the rigid transformation, all voxels in the segmented 
vessel regions of the target image were classified into eight 
cerebral arteries. Classification was based on the Euclidean 
distance between a voxel v(x, y, z) in the target image and a 
voxel ai(xi, yi, zi), {i = 1,…,8} in the eight labeled vessel regions 
in the reference image, that is,

	
d v a v a v a v ai

x x
i

y y
i

z z
i, .( ) = �( ) + �( ) + �( )2 2 2

	 (15.5)

(b1) (b2)

Right PCA Left PCA

BA Left MCARight MCA

Right ICA Left ICA

ACA

Reference image
(a)

Target image

Figure 15.6  Target image and reference image. (a) MIP image of target image. The target image was changed to register the reference 
image. (b1) MIP image of the reference image. (b2) The eight prelabeled arteries shown on the reference image in (b1).
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Detection of Cerebrovascular Diseases248

The classification result yielding the minimum Euclidean dis-
tance was considered to be the best initial result. A few small 
regions were not classified correctly at this stage because of 
slight deviations in vessel length and location in individual 
cases. To rectify any potential misclassification, the label 
of the largest component in each of the eight arteries was 
kept unchanged, and the rest of the regions were relabeled 

based on their distances from the earlier eight labeled com-
ponents. Figure 15.8 shows the SelMIP image of the ACA. By 
selecting the ACA from the list of cerebral arteries, a SelMIP 
image containing interested vessel alone can easily be gener-
ated. By using our new viewing technique, the selected ves-
sel region can be observed from various directions, and small 
aneurysms are easy to detect.

SelMIP (ACA selected)

SelMIP (ACA selected)

Figure 15.8  (See color insert.) Illustration of SelMIP images.

(a) (b)

Figure 15.7  Corresponding control points for the rigid transformation. (a) The center points of the 12 templates (black dots) projected 
onto the MIP image of the reference MRA study. (b) Corresponding points (black dots) in the MIP image of the target MRA study were 
found using the template matching method. Square boxes indicate search areas for individual control points.
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15.5  Computerized Detection of Arterial Occlusion in MRA 249

15.5 � COMPUTERIZED DETECTION OF 
ARTERIAL OCCLUSION IN MRA

In the previous section, a new method for automated label-
ing of eight arteries in MRA studies was described. By using 
this method, the lengths of these eight arteries can be cal-
culated. The lengths of vessels with arterial occlusion are 
shorter than those of normal vessels. Thus, the lengths of 
arteries can be used as a feature to distinguish between 
normal vessels and abnormal cases with arterial occlu-
sion. This section describes a CAD scheme for the detection 
of arterial occlusion in MRA studies based on the relative 
lengths of these eight arteries (Yamauchi et al. 2007).

15.5.1 � Detection of Arterial Occlusion Based 
on Relative Length of Arteries

In order to eliminate the effect of vessel thickness, 3D 
thinning transformation was applied to the labeled ves-
sel regions, as shown in left-side images of Figure 15.9. The 
absolute lengths of the eight arteries, obtained by counting 
the total number of labeled voxels, were found to be differ-
ent in different MRA studies. However, the relative lengths 
of the eight arteries were similar among normal cases. The 
relative length of an artery RLi is defined as

	
RL

L

TL
i

i= =i 1 8,, ,K 	 (15.6)

where
Li is the length of the ith labeled artery
TL is the total length of all eight labeled arteries

Right-side images of Figure 15.9 indicate the relative lengths 
of the eight arteries obtained from three normal cases and 
one abnormal case with arterial occlusion. As shown in the 

figure, the relative lengths of the eight arteries obtained from 
the normal cases are similar. However, the relative lengths of 
the eight arteries obtained from the abnormal case are quite 
different from those obtained from the normal cases because 
the artery containing the occlusion is shortened. In building 
the classification for detecting arterial occlusion, the rela-
tive lengths of the eight arteries were used as eight features. 
The features were then normalized using the average values 
and standard deviations of the eight features obtained from 
the normal cases. In the feature space, the distribution of 
the eight features was centered around the origin in normal 
cases, whereas this distribution was generally shifted from 
the origin in abnormal cases. The distance from the origin 
indicates the likelihood of abnormality. A classifier based on 
the distance of a case from the origin was employed for the 
detection of abnormal cases with arterial occlusion. In cal-
culating the distance from the origin, three types of distance 
were investigated, that is, Euclidean distance, chessboard 
distance, and city block distance.

15.5.2 � Performance Evaluation for 
Detection of Arterial Occlusions

The method was evaluated by applying it to 100 MRA studies, 
consisting of 85 normal cases and 15 abnormal cases with 
arterial occlusion. To evaluate the performance of the CAD 
scheme using the chessboard, Euclidean, or city block dis-
tances, ROC analysis was employed. The distances obtained 
from the normal cases and the abnormal cases were used 
as decision scores in the ROC analysis. Figure 15.10 shows 
the ROC curves obtained from CAD schemes using the 
chessboard, Euclidean, and city block distances, respec-
tively; the AUC values for CAD schemes using each of these 
three methods of calculating distance were 0.765, 0.854, 

Occlusion

Three normal cases

Relative length of eight arteries

Abnormal case

Abnormal case

Normal case Thinning image

Thinning image

Figure 15.9  (See color insert.) Relative lengths of the eight arteries obtained from three normal cases and one abnormal case with 
arterial occlusion. (From Yamauchi, M. et al., SPIE Proc., 6514, 65142C-1, 2007.)
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Detection of Cerebrovascular Diseases250

and 0.895, respectively. The results indicate that the CAD 
scheme based on city block distance achieved the best per-
formance. Using the CAD scheme based on city block dis-
tance, the sensitivity and specificity for the detection of 
abnormal cases with arterial obstruction were found to be 
80.0% (12/15) and 95.3% (81/85), respectively.

15.6 � COMPUTERIZED DETECTION OF 
LACUNAR INFARCTS IN MR IMAGES

The detection of asymptomatic lacunar infarcts in MR 
images is important because their presence indicates an 
increased risk of severe cerebral infarction (Kobayashi et al. 
1997, Shintani et  al. 1998, Vermeer et  al. 2003). However, 
accurate identification of lacunar infarcts on MR images 
is difficult for radiologists because of the difficulty in dis-
tinguishing lacunar infarcts from enlarged Virchow–
Robin spaces (Bokura et  al. 1998). The Virchow–Robin 
space is a normal change caused by age-related atrophy of 
brain tissue. Figure 15.11 indicates a lacunar infarct and 
an enlarged Virchow–Robin space. Both have low signal 
intensity in T1-weighted image and high signal intensity in 
T2-weighted image. It is therefore difficult to make a clear-
cut distinction between lacunar infarcts and enlarged 

Virchow–Robin  spaces. Therefore, a CAD scheme for the 
detection and/or characterization of lacunar infarct on MR 
images would be useful in assisting image interpretation by 
radiologists (Uchiyama et al. 2007a,b).

15.6.1  Extraction of Cerebral Region

Lacunar infarcts are generally detected in the basal gan-
glia region and in the white matter regions. Therefore, 
the cerebral parenchymal region was segmented first in 
order to avoid detecting false findings located outside 
the cerebral parenchymal region. A 3 × 3 median filter 
was applied to the T1-weighted image for eliminating 
impulse noise, and a histogram of the T1-weighted image 
was obtained. All pixels having the mode value of pixel 
values greater than 120 in the histogram were used as 
seed points. The region was then grown by appending 
a neighboring pixel to each seed point when the differ-
ence between a seed point and a neighboring pixel was 
less than 15. Small islands were eliminated using size-
based feature analysis. Black islands such as the lateral 
ventricle were filled. The remaining largest white island 
was determined as the cerebral parenchymal region. 
Figure 15.12 illustrates the process adopted for segmen-
tation of the cerebral parenchymal region.
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Figure 15.10  ROC curves showing the difference between normal cases and abnormal cases with arterial occlusion using the city 
block, Euclidean, and chessboard distances, respectively. (From Yamauchi, M. et al., SPIE Proc., 6514, 65142C-1, 2007.)
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15.6  Computerized Detection of Lacunar Infarcts in MR Images 251

15.6.2  Initial Identification of Lacunar Infarcts

The lacunar infarcts were classified into two types based on 
their location: isolated lacunar infarcts and lacunar infarcts 
adjacent to the lateral ventricle, as shown in Figure 15.13a 
and b. The former can easily be extracted using a simple 
thresholding technique. However, it is difficult to extract 
the latter because the adjacent lateral ventricle also has a 
high-intensity value with pixel values similar to that of the 

lacunar infarct. Therefore, to enhance the lacunar infarcts 
while suppressing normal structures, white top-hat trans-
form was employed. Figure 15.13c and d shows images 
obtained by white top-hat transform. It is clearly illustrated 
that this operation enhances white patterns smaller than 
the structure element used. Thus, extraction of the lacunar 
infarct adjacent to the cerebral ventricle is rendered easy 
using a thresholding technique.

(a)

(b)

Figure 15.11  Illustration of (a) lacunar infarct and (b) enlarged Virchow–Robin space in T1-weighted image (on left) and T2-weighted 
image (on right).
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Detection of Cerebrovascular Diseases252

By applying a thresholding technique to the image 
after white top-hat transform, initial candidates for lacu-
nar infarcts were determined. However, the pixel values of 
lacunar infarcts on MR images change according to the 
phases (acute, subacute, or chronic). Therefore, it is dif-
ficult to detect lacunar infarcts using a fixed threshold 
value. To solve this problem, a multiple-phase binarization 
technique was employed. In this procedure, thresholding 
techniques with several threshold values were applied to 
the T2-weighted images after white top-hat transforma-
tion. The thresholds for multiple-phase binarization were 
determined by increasing the pixel value from 55 to 205 
at 15-pixel intervals. The total phase number of thresh-
old values was 11. The size and degree of circularity were 
then calculated for each candidate region in the 11 bina-
rized images. Regions were considered to be candidates 
for lacunar infarcts when the size was between 33 and 

285 pixels and the degree of circularity was greater than 
0.59. Initial candidate lacunar infarct regions were deter-
mined by integrating the gravity centers of all candidates 
detected by multiple-phase binarization. If the center of 
a candidate region appeared two or more times within a 
3 × 3 square region around the gravity center of the can-
didate, it was considered as lacunar infarct candidate. 
However, if it appeared only once, it was regarded as FP 
and was eliminated.

15.6.3  Feature Extraction

Using the techniques described in the previous section, almost 
all lacunar infarcts were detected accurately. However, the 
initially selected candidates also included many FPs. To 
eliminate these, 12 features were determined for each ini-
tial candidate. These features included x and y coordinates, 

(c) (d) (e)
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Figure 15.12  Extraction of cerebral parenchymal region. (a) T1-weighted image. (b) Histogram of T1-weighted image. (c) Seed points. 
(d) Resulting image of region growing. (e) Extracted cerebral parenchymal region.
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15.6  Computerized Detection of Lacunar Infarcts in MR Images 253

signal intensity differences in the T1- and T2-weighted images, 
nodular components (NCs) on a scale of 1–4, and nodular and 
linear components (NLCs) on a scale of 1–4.

15.6.3.1  Location
The x and y coordinates were defined based on the center 
of gravity of the candidate regions. Because lacunar infarcts 
occur within cerebral vessel regions, candidates on the 
periphery of the cerebral region have a strong possibility of 
being FPs.

15.6.3.2  Signal Intensity Difference
The signal intensity differences on T1- and T2-weighted 
images were determined by the difference between the 

average pixel value of the lacunar infarct region and 
the average pixel value of the peripheral region. The lacunar 
infarct region was defined as the region of maximum area 
when multiple-phase binarization was applied. The periph-
eral region was defined as the differential region between 
the binary image of the lacunar infarct and its surrounding 
regions. The surrounding region was determined by apply-
ing a dilation process to the binarized region of the lacunar 
infarct three times in succession.

15.6.3.3  NCs and NLCs
NCs and NLCs were calculated on a scale of 1–4 using a 
new filter bank technique (Nakayama et al. 2006). This fil-
ter bank consists of an analysis bank and a synthesis bank. 

(a) (b)

(c) (d)

Figure 15.13  Efficacy of white top-hat transform in the enhancement of lacunar infarcts. (a) T2-weighted image with an isolated 
lacunar infarct. (b) T2-weighted image with a lacunar infarct adjacent to lateral ventricle. (c) The result of white top-hat transform of 
image (a). (d) The result of white top-hat transform image of (b). The white rectangular areas indicate lacunar infarct. (From Uchiyama, 
Y. et al., Acad. Radiol., 14, 1554, 2007a.)
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Detection of Cerebrovascular Diseases254

The analysis bank yields second-derivative images in vari-
ous sizes in the horizontal, vertical, and diagonal directions. 
The value of the second derivative for nodular structures 
tends to be in the negative in all directions. However, the 
value of the second derivative for linear structures tends to 
be zero in the direction of the axis of the linear structure, 
and negative in the direction perpendicular to the axis of 
the linear structure. The smallest and largest values of the 
second derivatives in all directions can be calculated by the 
smallest eigenvalue and the largest eigenvalue of the Hessian 
matrix. Thus, the NC image was defined based on the abso-
lute value of the largest eigenvalue of the Hessian matrix. 
On the other hand, the NLC image was defined based on 
the absolute value of the smallest eigenvalue of the Hessian 
matrix. Figure 15.14 shows the subimages for NC and NLC 
both on a scale of 1–4, obtained from images of the lacu-
nar infarcts and FPs. As shown in this figure, small lacunar 
infarcts are enhanced at the small scale, while large lacu-
nar infarcts are enhanced at the large scale. For determin-
ing NCs and NLCs, an ROI with a matrix size of 100 × 100 
was selected at the center of the candidate region. Using the 
ROI, we plotted cumulative histograms of the subimages 
for NCs and NLCs. NCs were identified by an average pixel 
value higher than 95% of the cumulative histogram of the 
subimage for nodular patterns at each point on a scale from 
1 to 4. NLCs were determined in the same manner by using 
the subimage for nodular and linear patterns at each point 
on a scale from 1 to 4.

15.6.4  False-Positive Reduction

A support vector machine (SVM) with 12 features was 
employed for the elimination of FPs. For training and 
testing the SVM, twofold cross-validation was employed. 

In this method, the database was randomly divided into 
two sets (A and B). The former was used for training and 
the latter for testing. This was then reversed, that is, 
set B was used for training and set A for testing. In this 
process, we finalized the following variables: the type of 
kernel function, its associated parameter, and the regu-
larization parameter C in the structural risk function. To 
optimize these parameters, we employed the AUC that 
indicates the accuracy with which lacunar infarcts were 
distinguished from FPs. In this study, a polynomial ker-
nel with kernel order 1 was used. The parameter C was 
set at 50. The numbers of input and output units for the 
SVM were set at 12 and 1, respectively. The output value 
of the SVM indicates the likelihood of lacunar infarcts. 
By changing the threshold level of the output, the perfor-
mance of our CAD scheme in detecting lacunar infarcts 
could be determined.

15.6.5 � Performance Evaluation for 
Detection of Lacunar Infarcts

In the first step toward identifying initial candidates for 
lacunar infarcts, 96.8% (90/93) of the lacunar infarcts were 
detected accurately with 6.88 (6771/1063) FPs per slice (51.3 
FPs per patient). This indicates that a combination of white 
top-hat transformation and multiple-phase binarization 
was useful in the detection of lacunar infarcts, since most of 
the lacunar infarcts were detected accurately. To eliminate 
FPs, an SVM with 12 features was employed. Two FROC 
curves for the overall performance of our CAD scheme 
were obtained, because twofold cross-validation was used 
for training and testing the SVM. Averaging of the two 
FROC curves yielded a sensitivity of 96.8% (90/93) with 0.76 
(813/1063) FPs per slice (6.2 FPs per patient). Figure 15.15 
shows a prototype of the CAD scheme for the detection of 
lacunar infarcts in T1- and T2-weighted images.

15.7 � OBSERVER STUDY FOR DETECTION 
OF LACUNAR INFARCTS

A retrospective observer study was carried out to evaluate the 
performance of radiologists in detecting lacunar infarcts on 
T1- and T2-weighted images without and with use of the CAD 
scheme. Thirty T1-weighted and 30 T2-weighted MR images 
obtained from 30 patients were used for evaluating observer 
performance. The group included 15 patients (age range: 
48–83 years; mean: 67.2 years; 10 men and 5 women) with a 
lacunar infarct and 15 patients (age range: 39–76 years; mean: 
64.0 years; 8 men and 7 women) without lacunar infarcts. Nine 
radiologists participated in the observer study. A sequen-
tial method was used in the observer performance  study. 
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Figure 15.14  Nodular patterns and nodular and linear patterns 
on scale 1–4 (S1–S4). These patterns were obtained from lacunar 
infarcts and FPs using the filter bank technique. (From Uchiyama, 
Y. et al., Acad. Radiol., 14, 1554, 2007a.)
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15.7  Observer Study for Detection of Lacunar Infarcts 255

T1- and  T2-weighted images were displayed together at the 
same transverse location. The observers could manually 
control the speed or sequence of the slice image display, and 
they were allowed to change the window level and width on 
the monitor. Each observer reads all of the slice images for T1- 
and T2-weighted images displayed on the LCD monitor ini-
tially without computer output. The observer marked his or 
her confidence level regarding the likelihood of the presence 
of a lacunar infarct. After the observer marked the initial level 
of confidence, the computer outputs were superimposed on 
the T1- and T2-weighted images. The observer again marked 
his or her confidence level if he or she wished to change the 
initial result.

The observers were given the following information: 
(a)  The purpose of the study was to evaluate the perfor-
mance of radiologists in detecting lacunar infarcts without 
and with the CAD scheme on T1- and T2-weighted images; 
(b) the role of the CAD output as a second opinion would be 
evaluated; (c) the observer study consisted of 30 MRI studies 
that did not or did contain a lacunar infarct and/or nonla-
cunar lesions such as enlarged Virchow–Robin spaces; (d) 
the defined diameter of lacunar infarcts was 3–15  mm; (e) 
computer performance yielded a sensitivity of 96% and 0.76 
FP per slice on average, and this result was not obtained 
from the 30 cases in this observer study; and (f) the observ-
ers were instructed to click on the screen using a mouse 
(1) to indicate on a bar their confidence level regarding the 
presence (or absence) of a lacunar infarct and (2) to locate 
the most likely position in each case. Each observer used 
a continuous rating scale displayed on the monitor. The 
observers were blinded to the number of patients with a 

lacunar infarct. The selected cases for the observer perfor-
mance study were presented in the same randomized order 
to the observers. There was no limit on reading time.

ROC analysis was used for comparison between the radiol-
ogists’ performances without and with the computer output 
for the detection of lacunar infarcts on T1- and T2-weighted 
images. Figure 15.16 shows ROC curves obtained from all 
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Figure 15.16  Average ROC curves obtained from nine radiolo-
gists for the detection of lacunar infarcts without and with com-
puter output. The average AUC value was significantly improved 
from 0.886 to 0.930 when observers used the computer output 
(p = 0.032).
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Figure 15.15  Illustration of a prototype CAD scheme for the detection of lacunar infarct.
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Detection of Cerebrovascular Diseases256

the radiologists without and with the computer output. 
The average AUC values for all the radiologists improved 
from 0.891 (without the computer output) to 0.937 (with the 
computer output), and this difference was statistically sig-
nificant (p = 0.032). Figure 15.17a shows clinically relevant 
changes in the confidence ratings of each observer with 
regard to patients with a lacunar infarct. The average num-
ber of cases affected beneficially was 1.33 (8.9%). However, 
the average number of cases affected detrimentally was 0.33 
(2.2%). In two out of the three detrimentally affected cases, 
the CAD scheme could not accurately detect the lacunar 
infarct. In one of the three detrimentally affected cases, the 
observers changed his/her confidence level into a lower value 
even though the CAD scheme accurately detected the lacu-
nar infarct. Figure 15.17b shows clinically relevant changes 
in the confidence ratings of each observer with regard to 
patients without a lacunar infarct. The average number 
of cases affected beneficially and detrimentally were 3.67 
(24.4%) and 0.89 (5.9%), respectively. The average number of 
patients without a lacunar infarct that were affected benefi-
cially was higher than that of patients with a lacunar infarct. 
These beneficial effects were caused by the fact that observ-
ers first marked lesions such as enlarged Virchow–Robin 
spaces with a relatively high confidence level indicating the 
presence of lacunar infarcts. However, the confidence level 
was changed to a lower value after taking into account the 
absence of lesions detected by CAD. Therefore, observers 
were able to make the correct diagnosis using the computer 
output. On the other hand, eight detrimentally affected 
cases were caused by FPs detected by the CAD scheme.

15.8 � CLASSIFICATION OF LACUNAR 
INFARCTS AND ENLARGED 
VIRCHOW–ROBIN SPACES

In the observer study described earlier, we realized that 
the majority of FPs detected by the computer are differ-
ent from those detected by radiologists, and radiologists 

can therefore disregard these obvious FPs identified by 
the computer. However, it is of interest to note that some 
FPs due to enlarged Virchow–Robin spaces detected by the 
computer were difficult for radiologists to distinguish from 
lacunar infarcts. These FPs were the main sources to the 
detrimental effects of the CAD scheme. A strong influence 
on radiologists by these FPs might result in unnecessary 
medical treatment for the patient. Therefore, a CAD scheme 
for the classification of lacunar infarcts and enlarged 
Virchow–Robin spaces was developed to assist radiologists’ 
image interpretation (Uchiyama et al. 2008b).

15.8.1  Feature Extraction

The database consisted of T1- and T2-weighted images 
obtained from 109 patients, which included 89 lacunar 
infarcts and 20 enlarged Virchow–Robin spaces. These 
images were acquired using a 1.5 T MR scanner. The radiolo-
gist selects regions of interest (ROIs) including a lesion. The 
morphological white top-hat transform was first employed 
for the enhancement of small focal hyperintensity lesions 
in ROIs of T2-weighted images. The gray-level thresholding 
technique was then employed for the segmentation of the 
lesions. To measure the characteristics of lacunar infarcts 
and enlarged Virchow–Robin spaces, six features were deter-
mined from the segmented lesions. These features included 
the x and y coordinates, size, degree of irregularity, and 
signal intensity differences in T1- and T2-weighted images. 
The x and y coordinates were defined based on the centroid 
of the segmented region. Size was defined as the number of 
pixels in the segmented region. The degree of irregularity 
was given as 1-C/L, where C is the length of circumference 
of the circle having the same area as the segmented region, 
and L is the boundary length of the segmented region. The 
signal intensity differences in the T1- and T2-weighted images 
were defined as the difference between the average pixel 
value of the segmented region and the average pixel value 
of the peripheral region. Figure 15.18 shows the distribution 
of the six features obtained from 89 lacunar infarcts and 
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Figure 15.17  Graphs showing the number of cases (>15%) affected by CAD output in confidence level with regard to patients (a) with 
a lacunar infarct and (b) without a lacunar infarct.
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15.8  Classification of Lacunar Infarcts and Enlarged Virchow–Robin Spaces 257

20 enlarged Virchow–Robin spaces. Black and white circles 
indicate lacunar infarcts and enlarged Virchow–Robin 
spaces, respectively. Enlarged Virchow–Robin spaces are 
located at the central region on the right and left sides, as 
shown in Figure 15.18a. The sizes of enlarged Virchow–Robin 
spaces are relatively small comparable to those of lacunar 
infarcts, as shown in Figure 15.18b. Signal intensity differ-
ences in T2-weighted image appear to be smaller for enlarged 
Virchow–Robin spaces than for lacunar infarcts, as shown in 
Figure 15.18c.

15.8.2  Classification Scheme

A neural network with six features was employed for distin-
guishing between lacunar infarcts and enlarged Virchow–
Robin spaces. A three-layer neural network, consisting of six 
input units, two hidden units, and one output unit, was used. 
The number of hidden units was determined empirically. 
The input data for the neural network were the six features 
determined in the previous section. The neural network 

generates a decision boundary that optimally partitions the 
feature space into the two classes, that is, lacunar infarcts 
and enlarged Virchow–Robin spaces. The output value of 
the neural network indicates the likelihood of occurrence 
of the lacunar infarct. For training and testing of the neural 
network, the leave-one-out method was employed. To evalu-
ate the classification performance, ROC analysis was used; 
the AUC value was 0.945. The sensitivity and specificity of 
detection of lacunar infarcts were 93.3% (83/89) and 75.0% 
(15/20), respectively. The results indicate that this comput-
erized method may be useful for the classification of lacu-
nar infarcts and enlarged Virchow–Robin spaces in T1- and 
T2-weighted images.

15.8.3 � Fusion Image of T2-Weighted 
Image and MRA

MRA images acquired with 3 T MR scanner can visualize 
blood flow inside small vessels. Therefore, a fusion image of a 
T2-weighed image and an MRA may be useful for distinction 
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Figure 15.18  Distribution of six features obtained from lacunar infarcts and enlarged Virchow–Robin spaces. (a) Relation between x and 
y coordinates. (b) Relationship between size and degree of irregularity. (c) Relationship between signal intensity difference in T1-weighted 
image (WI) and signal intensity difference in T2-weighted image (WI). (From Uchiyama, Y. et al., Conf. Proc. IEEE Eng. Med. Biol., 3908, 2008b.)
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Detection of Cerebrovascular Diseases258

between lacunar infarcts and enlarged Virchow–Robin 
spaces (Uchiyama et al. 2009). Because enlarged Virchow–
Robin spaces are formed by atrophy of the tissue surround-
ing a cerebral artery, blood flow inside the small artery can 
be observed in these images. However, in the case of lacu-
nar infarct, blood flow is absent. Figure 15.19 illustrates a 
fusion image of a T2-weighed image and an MRA, which 
were acquired with a 3 T MR scanner. In the fusion image, 
blood flow is clearly visible in the lesion, facilitating the 
identification of the lesion as an enlarged Virchow–Robin 

space. To   enerate the fusion image, we determined the 
location of 2D T2-weighted images in the 3D MRA image 
using an image registration technique. In this method, a 
similarity measure was employed based on the pixel values 
of the T2-weighted image and the voxel values of the slice 
image along the body axis of the 3D MRA image. The vessel 
regions in MRA image were segmented using the threshold-
ing and region-growing techniques, described in Section 
15.2.1. Volume rendering was then used to generate the 
fusion image.

(a) (b)

(c)

Figure 15.19  Illustration of fusion image of T2-weighted image and MRA. (a) T2-weighted image. (b) Fusion image in the bottom-to-top 
direction. (c) Fusion image in the top-to-bottom direction. (From Uchiyama, Y. et al., IFMBE Proc., 126, 2009.)
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15.9  CONCLUSIONS

A number of CAD schemes have been developed for the detec-
tion and/or classification of cerebrovascular diseases. Observer 
performance studies indicated that computer output helps 
radiologists improve their diagnostic accuracy. Therefore, 
CAD schemes will be useful in assisting radiologists in their 
assessment of cerebrovascular diseases on MR images.
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