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17.1  INTRODUCTION

According to a WHO report, in 2002, the estimated num-
ber of people with blindness worldwide was about 37 mil-
lion (Resnikoff et  al. 2004). Since adults 50  years of age 
and older account for more than 82% of all blind people, 
the current prevalence is expected to increase with the 
aging of the population. The leading cause of blindness is 
cataracts, which account for approximately 50% of cases. 
Other main causes include glaucoma, age-related macu-
lar degeneration (AMD), corneal opacities, and diabetic 
retinopathy (DR). In developed countries, glaucoma is 
the second leading cause of vision loss after AMD. While 
blindness is unavoidable with AMD, for other diseases, 
known effective strategies for elimination, screening, 
and early treatment are critical for the prevention of total 
blindness.

In a clinical visit, ophthalmologists generally examine 
the condition of a patient’s eye through an ophthalmoscope. 
While ophthalmoscopy is simple, low cost, and versatile, it is 
a real-time examination, and the images cannot be stored. 
Therefore, for screening, diagnostic records, and longitudi-
nal comparisons, retinal fundus photography is frequently 
and widely used. In reading retinal fundus images, physi-
cians must look for various signs of abnormalities. However, 
both the number of qualified professionals and their time 
are limited. To reduce physicians’ workload and improve 
diagnostic efficiency, computer-aided diagnosis of retinal 
fundus images can be helpful, especially in screening exams 
in which a large number of normal images are obtained 
(Fujita et al. 2008). Computerized analysis can also be useful 
for quantitative measurements of various diagnostic param-
eters for consistent assessment and follow-up examinations.
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17.2 � DETECTION OF NORMAL 
STRUCTURES IN RETINAL 
FUNDUS IMAGES

The retinal fundus is the only part of the body where blood 
vessels can be directly observed. A retinal fundus photo-
graph is obtained using a specialized camera system that 
illuminates the retinal fundus through the pupil and uses a 
flash of light reflected from the fundus to obtain an image. 
Figure 17.1a shows a rough sketch of an eye cross section. 
Retinal blood vessels enter the eyeball through the optic 
nerve head (ONH) and run inside the retinal nerve layer. 
Usually, there are four pairs of large arteries and veins 
extending from the ONH to the upper and lower nasal sides 
and the upper and lower temporal (ear) sides. The ONH is 
shaped like a pit as a result of the entering nerve fibers. The 
state of this dent, called a cup, and the rim constituted by 
the nerve fibers are important for the diagnosis of glau-
coma. The main structures observed in a retinal fundus 
image include the retinal blood vessels; the ONH, also called 
the optic disk; and the fovea (Figure 17.1b).

The major purposes for screening by retinal fundus 
examinations include, but are not limited to, the assessment 
of hypertensive changes, the diagnosis of DR, and the diag-
nosis of glaucoma. To detect these diseases, it is important 
to first identify or segment normal structures, such as blood 
vessels, the ONH, and fovea, because they can serve as land-
marks for image processing and are occasionally sources of 
false positives in the detection of pathologic lesions. In fact, 
most of the previously reported CAD schemes include algo-
rithms for detecting these normal structures.

17.2.1 � Public Databases for Retinal 
Image Analysis

There have been numerous studies on the detection 
and segmentation of the ONH and retinal blood vessels. 
Many of these studies utilize public databases, such as 
the Structured Analysis of the Retina (STARE) and the 
Digital Retinal Images for Vessel Extraction (DRIVE) 
databases. The STARE database, which is the oldest, is 
often used for the evaluation of ONH localization and 
vessel segmentation algorithms. Some of the images 
contain pathologic lesions, which make the tasks chal-
lenging. The DRIVE database may be the most widely 
used and cited of all public retinal databases. The com-
parison results from some algorithms published by dif-
ferent groups are presented on the website (Niemeijer 
et  al. 2004). The MESSIDOR database, which includes 
1200 images, is the largest database. It provides retinopa-
thy and macular edema grades for each image; however, 
their locations are not specified. The Retinopathy Online 
Challenge (ROC) project was organized for the automatic 
detection of microaneurysms. The database provides 
50 training cases with a reference standard, and 50 test 
cases without. Using this database, an algorithm compe-
tition was held at the CAD Conference of SPIE Medical 
Imaging 2009. There are several other databases avail-
able for the development and comparison of computer 
algorithms, and they are listed in Appendix 17.A. The 
relatively early availability of these public retinal fundus 
image databases compared to other medical images may 
have promoted CAD research.
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Figure 17.1  (a) A rough sketch of a cross section of an eye. (b) A retinal fundus photograph of a right eye.
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17.2.2 � Detection and Segmentation 
of Optic Nerve Head

A number of groups have been investigating automated 
methods for the detection and segmentation of ONHs. The 
ONH has an oval shape where large vessels converge, and 
it appears as a bright region on a retinal fundus image. On 
the basis of these characteristics, many detection algorithms 
utilize pixel thresholding techniques, and some algorithms 
use the information of vessel orientation. For segmentation, 
edge information is often used along with techniques such as 
Hough transformation and deformable models. While it is not 
difficult for a human to identify the ONH, automatic detec-
tion can eliminate the need for manual intervention during 
preprocessing for other tasks. On the other hand, automatic 
segmentation results can be used for shape analyses, such as 
the automatic measurement of disk areas and diameters.

In general, relevant preprocessing is carried out before 
detecting and segmenting the ONH in most CAD schemes. 
Some common preprocessing tasks include smoothing opera-
tion for noise reduction and/or the removal of small bright 
lesions, morphological closing operation for vessel removal, 
luminosity or contrast normalization (linear contrast enhance-
ment), and illumination equalization (background correc-
tion) to compensate for uneven brightness, which generally 
decreases toward the field of view (FOV) borders. To exclude 
the region outside the FOV from the analysis, a mask image can 
be created simply by applying the thresholding technique with 
supplemental morphological closing. Occasionally, mirroring 
or FOV extension is performed to eliminate the edge effect.

A retinal fundus image generally consists of three color 
components, red, green, and blue (RGB). Based on the bright 
characteristic of the ONH, green is a popular color plane 
used for ONH detection because the red component may 
sometimes saturate, and the blue component does not pro-
vide much information other than noise. Another frequently 
used component is the luminance, or intensity, of the hue–
saturation–luminance/intensity (HLS or HSI) representa-
tion, which is convertible from the RGB space. Some studies 
have employed Lab space (Osareh et al. 2002; Kande et al. 
2009). Three color (RGB) planes can be processed indepen-
dently, and the results can be combined to obtain maximal 
information (Carmona et al. 2008).

17.2.2.1  ONH Localization
Automated detection of the ONH is relatively straightfor-
ward for normal cases; however, it can be difficult in cases 
with pathologic lesions. In normal cases, one can look for 
the brightest circular region of a certain size. However, in 
abnormal cases, other bright lesions, such as exudates, may 
also be detected, the ONH may be occluded by pathologic 
lesions, or the ONH boundary may become unclear. To 

overcome such difficulties, a variety of schemes have been 
proposed for ONH detection. Although the ONH region is 
generally bright in retinal fundus images, large vessels com-
ing into the ONH appear dark.

On the basis of this observation, the region with the highest 
variation in brightness can be considered as the probable loca-
tion of the ONH (Sinthanayothin et al. 1999). Another strategy 
is to search for a bright circular region. The edges are detected 
and used in template matching (Lalonde et al. 2001) or Hough 
transformation (Chrastek et al. 2004; Aquino et al. 2010; Zhu 
et al. 2010) in order to locate and/or segment circular objects. 
In addition, the blood vessel network is an important feature 
for locating the ONH. The convergence of vessels (Hoover and 
Goldbaum 2003) and their orientation (Foracchia et al. 2004; 
Youssif et al. 2008) can indicate the origin of major vessel arches 
(vertex of parabolas), where the ONH lies. For these approaches, 
retinal blood vessels must be detected and thinned. The 
positional relationship between normal structures may be 
nontrivial information in the search for their locations. The 
fovea is located on or near the axis of the vessel parabola with 
its vertex at the ONH at a distance of about twice the diameter 
of the ONH. Such information can be used to create a probabil-
ity or reliability map (Perez-Rovira and Trucco 2008).

In many cases, several pieces of information regarding the 
brightness, blood vessels, and their positional relationship are 
combined to make the ultimate decision. These features can 
be used to create probability maps, which would be combined 
with the prior probability map based on the location of the ONH 
in training cases, and the posterior probability map suggests 
the likeliest position (Tobin et  al. 2007). In another method, 
these data are entered into a statistical learning machine, 
namely, the k-nearest neighbor (kNN) regressor (Devroye et al. 
1996), in order to estimate the distances of each pixel to the 
ONH and fovea (Niemeijer et al. 2009). The pixel with the short-
est distance to the ONH is determined as the point of interest 
after smoothing. Some of these studies have been evaluated 
using common databases, thus facilitating comparison of 
their results (Perez-Rovira and Trucco 2008; Zhu et al. 2010).

Most, if not all, of the computer algorithms introduced 
earlier have achieved high sensitivity rates (above 90%) for 
ONH detection. Accurate segmentation of the ONH can be 
even difficult for humans in cases where the ONH is titled 
or peripapillary chorioretinal atrophy (PPA) is present. In 
fact, intra- and inter-reader variations are known to exist, 
although much smaller than those for cup segmentation 
(Tielsch et  al. 1988; Verma et  al. 1989). In our experience, 
the agreement of disk segmentation between readers in 
terms of the ratio of the region of intersection to the region 
of union ranged from 0.90 to 0.94 (Muramatsu et al. 2011b). 
This small but significant variation may make consistent 
evaluation of the segmentation results difficult, due to the 
absence of a concrete gold standard.
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17.2.2.2  ONH Segmentation
Several research groups have proposed automated schemes 
for segmentation of the ONH. The common procedure is to 
first detect the approximate location of the ONH, followed by 
a precise segmentation. In one study, the bright region with 
a prespecified range of areas is roughly extracted, and then 
after suppressing major vessels with a closing operation, the 
ONH is segmented using the watershed method (Walter and 
Klein 2001). In another study, the optic nerve region is trans-
formed to a polar coordinate system, and an optimal path 
corresponding to the ONH border is searched using a cost 
function based on edge strength, texture, and smoothness 
constraints (Merickel et al. 2006). A model-based approach 
can be used to extract normal structures (Li and Chutatape 
2004). Landmarks are placed on the border of the ONH and 
on a large vessel inside the ONH, and the size and orienta-
tion of the ONH are adjusted by matching these points to 
those of the model created with training cases.

A popular strategy is the use of deformable models 
such as Snakes (Osareh et  al. 2002; Xu et  al. 2008), circu-
lar deformable model (Lowell et al. 2004), level set method 
(Wong et  al. 2008), or another deformable model (Kande 
et al. 2009). In these methods, the plausible outline is deter-
mined by energy optimization, which is generally based on 
edge strength and smoothness. When employing a deform-
able model, the initialization may strongly influence the 
final results. One group proposed a method using genetic 
algorithm (GA; Carmona et al. 2008), in which probable edge 
points, called hypothesis points, where the brightness drops 
radically are first searched radially, and the GA determines 
the ellipse that includes the largest number of hypothesis 
points. A pixel classification method was investigated by the 

same research group (Abramoff et al. 2007) that proposed 
the pixel regression method for ONH detection. In this 
method, the pixels around the ONH region are classified as 
rim, cup, and background by using the kNN classifier and 
Gaussian filter bank features.

Authors have compared three different methods: the 
Snakes active contour model and two pixel classification 
methods using fuzzy c-means (FCM) clustering and a neu-
ral network (NN; Muramatsu et al. 2011b). In this study, the 
approximate location of the ONH is determined by selecting 
the center of a region with a maximum area that satisfies 
the circularity criterion after applying a percentile thresh-
olding method. Edge detection is performed by applying 
the Canny edge detector on the blood-vessel-erased image, 
which will be described in the next section. For Snakes, 
the ONH contour is determined by energy minimization 
based on edge information and contour smoothness. For 
FCM and NN, images features, such as the original pixel 
values, the pixel values in surrounding pixels, the con-
trast, and edge information, are used. These methods were 
evaluated using separate datasets obtained by two camera 
systems. In this study, the active contour model and the 
NN-based method achieved slightly better performance 
than the FCM-based method, although the difference was 
very small. The results from the three methods are shown 
in Figure 17.2.

The results of computer algorithms are often evaluated 
by comparison with manual contours. Current computer-
ized segmentation schemes work fairly well for normal cases 
with decent image quality; however, it seems that accurate 
segmentation of low contrasted ONHs and ONHs with PPA 
still remains a subject for future investigation.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

Figure 17.2  Results of ONH segmentation by the three methods. (a) Original image, (b) manual outline by an ophthalmologist, (c) red 
channel image of the blood-vessel-erased image, (d) edge image, (e) outline by the Snakes method, (f) pixel classification result by the 
FCM method, (g) outline by the FCM method, (h) pixel classification result by the NN method, and (i) outline by the NN method.
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17.2.3  Segmentation of Retinal Blood Vessels

As mentioned earlier, the retinal blood vessels can be 
observed in retinal fundus images without the use of a con-
trast agent. Although fluorescence images can be obtained 
with a contrast agent to better visualize capillaries and 
microaneurysms, they are not routinely utilized. In fundus 
photographs, blood vessels appear dark and decrease in cal-
iber size from the ONH periphery toward the macula region 
and the edge of the FOV. Normally, arteries are slightly nar-
rower and lighter red than the collateral veins. In principle, 
automated segmentation schemes for retinal vessels may be 
similar to the vessel segmentation methods in angiography 
and other segmentation algorithms for linear objects.

There have been numerous studies aimed at retinal ves-
sel segmentation in fundus images, and it is still an active 
research topic. The fundamental procedures include pre-
processing of images, vessel enhancement by various filters, 
and the final determination of vessel regions. Because the 
green component of RGB images gives the highest contrast 
for blood vessels, the majority of the computerized schemes 
utilize green-channel images. In rare cases, red-free images 
and other color representations are used. The preprocessing 
techniques include a smoothing operation for noise reduc-
tion, contrast normalization, and illumination equaliza-
tion, which are also employed in ONH segmentation. One 
preprocessing technique that may be distinctive for the 
vessel segmentation is a morphological opening operation 
to reduce the effect of the central light reflex (Marin et al. 
2011). Although the profile of a vessel is generally Gaussian 
shaped, when a flash of light is reflected by the blood, the 
central part may appear brighter than the vessel walls. 
This effect, called the central light reflex, can potentially 
cause some parts of vessels to be misdetected. A morpho-
logical opening with a small kernel size may remove these 
centerlines.

Many variations in filters, vessel models, and other oper-
ators are applied for the enhancement or segmentation of 
blood vessels. Some of these can be grouped as top-hat filters 
(Condurache and Aach 2006; Mendonca and Campilho 
2006; Marin et al. 2011), Gabor filters (Chen and Tian 2008), 
matched filters with Gaussian profiles (Sofka and Stewart 
2006; Al-Rawi et al. 2007; Wu et al. 2007; Kande et al. 2010b; 
Villalobos-Castaldi et  al. 2010), line operators (Mendonca 
and Campilho 2006; Perfetti et al. 2007; Farnell et al. 2008), 
and Hessian-based operators (Condurache and Aach 2006). 
A top-hat filter can enhance a signal that is smaller than the 
filter element. A popular filter shape is a circle with a diam-
eter larger than that of the thickest vessel. However, this fil-
ter would also enhance round objects. Other filters, such as 
Gabor filters, Gaussian filters, and line filters, are intended 
to selectively enhance tube-like objects. To enhance ves-
sels of various sizes, filters with multiple sizes in different 

orientations must be applied. In many studies, the filters are 
rotated in 12 different directions every 15°. In order to reduce 
computational costs, a specific direction can be selected in 
advance by calculating the derivative or the Hessian matrix 
(Wu et  al. 2007; Chen and Tian 2008). Although vessels 
with different sizes can be enhanced simultaneously with 
the Hessian-based approach, the edges are also enhanced. 
In such cases, the presence of parallel edges in which the 
gradients are in opposite directions is used to distinguish 
between vessels and edges (Cai and Chung 2006; Sofka and 
Stewart 2006; Salem et al. 2007). Derivative-based methods 
are also used to detect ridges, and as a result, the center-
line pixels of vessels are determined (Staal et al. 2004; Garg 
et al. 2007; Salem et al. 2007). Using the centerlines, vessel 
regions can be segmented by the region growing method, 
or features can be determined, which are then used in the 
classification step.

When vessel-like structures are enhanced by filtering, 
vessel segmentation can be achieved by simply applying a 
threshold (Al-Rawi et al. 2007; Perfetti et al. 2007; Anzalone 
et  al. 2008; Farnell et  al. 2008) or using clustering meth-
ods, such as an FCM clustering (Kande et al. 2010). In other 
studies, features were determined based on the filter out-
put and/or the original images, which were then employed 
for classifying vessel pixels and nonvessel pixels using vari-
ous classifiers, such as kNN (Staal et al. 2004), SVM (Ricci 
and Perfetti 2007), NN (Marin et al. 2011), Bayesian classi-
fier (Soares et  al. 2006), and hysteresis classifier, which is 
a combination of two linear classifiers (Condurache and 
Aach 2006).

Using thresholding and pixel classification methods, part 
of a vessel may be missed. One simple way to fill these gaps 
is a morphological operation; however, when the gaps are 
large, they cannot be successfully filled. Instead, because 
all vessels must be connected to the large vessels near the 
ONH, various vessel-tracing schemes have been proposed. 
In some methods, several seed points are selected on pix-
els with a high likelihood of a vessel, and then the vessels 
can be traced in the likely direction (Delibasis et al. 2010), 
or eight neighbor pixels may be tested for their vessel likeli-
ness (Vlachos and Dermatas 2010). In another method, first, 
a strict threshold is applied, and then in the tracked local 
window, a less strict threshold is selected (Cai and Chung 
2006). In this way, low-contrast vessels can be detected 
without a large increase in false-positive detection.

Authors of this chapter have also attempted to perform 
the segmentation of blood vessels as a part of various CAD 
schemes, which will be introduced in the later sections. 
The presence of blood vessels can be an obstacle for both 
the detection of pathologic lesions and segmentation of the 
ONH. In these cases, blood vessels are detected by the use 
of the top-hat filter, and pixels corresponding to the ves-
sels are interpolated by the surrounding retinal pixels to 
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create a blood-vessel-erased image (Nakagawa et al. 2008). 
In the method for vessel diameter measurement, a modi-
fied method based on a combination of the top-hat filter 
and the double ring filter is used to improve the sensitivity 
and specificity when segmenting large vessels (Muramatsu 
et al. 2011a).

For the evaluation of computerized segmentation, 
receiver operating characteristic (ROC) analysis is often 
used. Because most of pixels in retinal fundus images con-
stitute nonvessel pixels (generally more than 85%), the 
performance, in terms of area under the curve, appears to 
be relatively high (above 0.90). Other indices include mea-
sures of overlap in vessel pixels, such as the fraction of pix-
els correctly identified as vessel (sensitivity) or the ratio of 
the area of intersection to the area of union. In the evalua-
tion, manual segmentation results are considered the gold 
standard. However, the manual segmentation process is a 
time-consuming and difficult task due to the low contrast 
of tiny vessels. In addition, vessel walls are often diffused 
making it difficult to determine the exact borderlines. 
Segmentation can vary depending on the reader, since 
one reader may trace further down to very thin peripheral 
vessels than others. As a result, inter-reader variation can 
be seen to some extent in manual segmentation results. 
In fact, the accuracy of segmentation, based on the pixel-
wise sensitivity and specificity, by a second observer in 
the DRIVE database is 0.95, with a κ statistic value of 0.76. 
Many studies of retinal vessel segmentation schemes have 
utilized public databases for comparative evaluation and 
because of the availability of the gold standard. The results 
of some earlier studies can be visually compared and tabu-
lated on the DRIVE website.

17.3 � COMPUTERIZED DIAGNOSIS 
OF GLAUCOMA IN RETINAL 
FUNDUS IMAGES

Glaucoma is the second leading cause of vision loss in the 
world, and it is expected to affect about 80 million people 
in the year 2020 (Quigley and Broman 2006). Because of its 
slow progressive nature, many patients are unaware of this 
visual disturbance until the disease reaches an advanced 
stage. In a population-based prevalence survey of glaucoma 
in Tajimi, Japan, it was found that 93% of examinees who 
had primary open-angle glaucoma were previously undiag-
nosed (Iwase et al. 2004). Early detection of glaucomatous 
changes is the key to minimizing the chance of significant 
visual disability. Glaucoma is generally diagnosed by a 
combination of several tests, which may include ophthal-
moscopy, intraocular pressure measurement, visual field 
testing, retinal fundus photography, Heidelberg retinal 
tomography (HRT), scanning laser ophthalmoscopy, and 

optical coherence tomography (OCT). A retinal fundus pho-
tograph is often obtained as a diagnostic record not only 
for glaucoma but also for other eye diseases. In addition, it 
can sometimes be used in internal medicine. Because of its 
relatively simple procedure and low cost, it is well suited for 
screening examinations.

17.3.1 � Detection of Retinal Nerve 
Fiber Layer Defect

One of the earliest signs of glaucoma are retinal nerve fiber 
layer defects (NFLDs), which can be observed as dark stria-
tions extending from the ONH. There have been several 
studies about the analysis of NFL using different image 
modalities, such as fundus photography, scanning laser 
polarimetry, and OCT. However, to the authors’ knowledge, 
only a few studies have reported the computerized detec-
tion and quantification of NFLDs in retinal fundus images. 
Because retinal fundus photography is widely used, com-
puterized analysis of NFL on fundus photographs could be 
very informative.

In the earliest study, NFL striation measurement was 
attempted by comparing the variation in pixel values across 
the NFL to that along the NFL (Peli et  al. 1989). Another 
group proposed quantification of NFL based on the inten-
sity profile around the ONH. The thickness of the NFLD 
was measured by taking the first derivative of the intensity 
profile upon locating its borders (Lee et al. 2004). Texture 
analysis of NFL may be useful for the detection of cases 
with NFLD. Using the texture features from the gray level 
run length matrix, normal eyes and eyes with NFLD were 
classified by linear discriminant analysis (LDA; Yogesan 
et al. 1998). The use of other texture features based on the 
Markov random field was suggested, which was found to be 
potentially useful for classifying regions of NFLD in glau-
coma patients and regions of NFL in normal patients; how-
ever, the distinction between defected and nondefected 
regions in glaucoma patients was more difficult (Kolar and 
Vacha 2009).

A computerized detection method for NFLDs based on 
image transformation and Gabor filtering has been investi-
gated (Muramatsu et al. 2010). To facilitate NFLD detection, 
the images are transformed such that the NFLDs, which are 
shaped like curved bands or fans in the original images, 
appear relatively straight. The approximate directions of 
the nerve fibers in a fovea-centered image are modeled by 
a set of elliptic lines with respect to the ONH center, and 
an image transformation is performed that is similar to a 
polar transformation. After brightness correction, the verti-
cally oriented Gabor filters are applied to enhance NFLDs, 
and the NN is employed for the classification of candidate 
regions based on some simple image features. This series of 
procedures is illustrated in Figure 17.3.
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17.3  Computerized Diagnosis of Glaucoma in Retinal Fundus Images 285

In earlier studies, small numbers of cases (less than 15 
cases) were used in the evaluation (Peli et al. 1989; Yogesan 
et  al. 1998; Lee et  al. 2004). In one study, glaucoma cases 
with NFLD and normal cases were classified with 80%–90% 
accuracy (Yogesan et al. 1998). Sampled regions of interest 
were analyzed in two studies; the determined feature was 
moderately correlated (approximately 0.6) with the disease 
grading by two observers in one study (Peli et  al. 1989), 
whereas defected regions and normal regions sampled from 
30 cases were distinguished with 96% accuracy in another 
(Kolar and Vacha 2009). In our study, a sensitivity of 90% 
with 1.0 false positive per image was achieved in 81 cases 
with NFLDs and 81 cases without NFLDs (Muramatsu et al. 
2010). Further investigations are expected for the analysis of 
retinal nerve fibers.

17.3.2  Analysis of Optic Nerve Head

Another major sign of glaucoma is deformation of the 
ONH. The ONH is generally shaped like a pit where the reti-
nal nerves and blood vessels leave the fundus. When optic 
nerves are damaged, the rim becomes thin, and the cup 
enlarges, as shown in Figure 17.4. In general, this deforma-
tion, known as cupping in early glaucoma, is more likely to 
be observed in the inferior and superior parts of the ONH. 
Therefore, cup–disk diameter ratio (CDR), especially in the 
vertical direction, as shown in Figure 17.4, is considered 
an index for the diagnosis of glaucoma (Gloster and Parry 
1974). However, in clinical practice, cup and disk diam-
eters are rarely quantitatively measured due to the limited 
time for diagnosis. In addition, because of the difficulty in 

identifying the cup border in retinal fundus images, intra- 
and inter-reader variations are not small. Figure 17.5 shows 
the outlines of cup and disk determined by three expert 
ophthalmologists. Although the three ophthalmologists 
agree that this patient has glaucoma, the CDRs based on 
these outlines range from 0.81 to 0.94. Therefore, com-
puterized measurement of CDR may facilitate consistent 
diagnosis and longitudinal comparisons while saving oph-
thalmologists’ time.

(e) (f ) (g)

(a) (b) (c) (d)

Figure 17.3  An illustration of the NFLD detection method. (a) Original image with arrows specifying an NFLD, (b) the blood-vessel-erased 
image, (c) elliptic lines approximating the directions of nerve fibers, (d) the computerized detection result, (e) the transformed image, 
(f) the brightness-corrected image, and (g) the filtered image with arrows indicating the NFLD.

(a)

(c) (d)

Disc
Cup

(b)

Disc
Cup

Figure 17.4  The comparison of the normal and glaucomatous 
ONHs. (a) Normal ONH, (b) the cup and disk outlines by an oph-
thalmologist, (c) glaucomatous ONH, and (d) the manual outlines.
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Detection of Eye Diseases286

17.3.2.1 � Determination of CDR 
on Plain Photograph

Despite the difficulty in determining cup boundaries on ret-
inal fundus images, a few research groups have investigated 
computerized methods for measuring CDRs. Using red and 
green color planes for disk and cup, respectively, closing 
and opening operations were applied for smoothing edges 
and removing some white lesions, and the CDR was deter-
mined by measuring the remaining areas using a simple 
thresholding technique (Nayak et al. 2009). In another study, 
the level set method was applied to the green plane, and the 
cup region was determined by fitting an ellipse to the con-
vex points on the output (Zhang et al. 2009). These methods 
utilize the fact that the cup regions appear brighter than the 
rim regions. When ophthalmologists read images, they also 
take into account the vessel directions and their bending 
points. By detecting the retinal vessels and identifying their 
kinks inside the optic disk, the cup contour may be deter-
mined (Wong et al. 2010).

Because the determination of cup borders is difficult, 
especially on the temporal side, due to the absence of clear 
edges and the sparseness of reference vessels, a method 
for estimating the CDR using the pixel value profiles 
in the vertical direction was proposed (Hatanaka et  al. 
2010). After automated determination of the disk outline, 
several vertical profiles near the center of the disk were 
obtained from the blood-vessel-erased images. These pro-
files were averaged and smoothed to reduce the effect of 
noise, and the cup border points were determined on the 
basis of the second derivative of the profile. The vertical 
profiles for normal and glaucomatous cases are shown in 
Figure 17.6.

17.3.2.2 � Determination of CDR on 
Stereo Photographs

As mentioned earlier, determination of the cup bound-
ary in a plain photograph is difficult even for well-trained 
ophthalmologists. Therefore, to capture the 3D structure 
of the ONH, stereo imaging was suggested. Stereo retinal 
fundus cameras have been marketed by several companies. 

Using these devices, a pair of images focused on the ONH, 
generally with a narrow optic angle, is obtained simultane-
ously or with an instant delay. Some computerized meth-
ods have been proposed for determining CDR in stereo 
images. In one study, stereo disparities were determined 
by calculating the cross-correlation in edge-enhanced 
images. The cup and disk contours were determined semi-
automatically based on iso-disparity contours (Corona 
et  al. 2002). Another group investigated two matching 
methods, including cross-correlation and minimum fea-
ture difference, for disparity determination (Xu et al. 2008). 
In their method, the disk contour was determined using a 
deformable model, and then the cup margin was located at 
a prespecified depth from the disk margin. As introduced 
earlier, the regions of the cup, rim, and background (ret-
ina) were determined by the pixel classification method on 
stereo images by another group (Abramoff et al. 2007). In 
addition to the color-based features, stereo disparity fea-
tures were included for the classification, and the CDR was 
determined by counting the numbers of pixels in the cup 
and rim groups.

The cross-correlation for the disparity measurement was 
also utilized by another group (Nakagawa et al. 2008). The 
disk region was determined using one image of the pair that 
was imaged first, and then the corresponding region in the 
other image was extracted by global matching based on the 
cross-correlation. An apparent disparity due to the patient’s 
motion can be disregarded by this procedure, so that the 
real disparity due to depth remains. The depths were deter-
mined at every four pixels by locating the corresponding 
points with local cross-correlation. Figure 17.7 shows a 
depth map reconstructed using this method and the corre-
sponding HRT image. The cup outline was determined by 
searching for the maximum gradient points in radial direc-
tions in the depth map.

Same as the evaluation of disk segmentation, cup 
segmentation results and CDR measurement are often 
evaluated in comparison with the manual contours 
and measurements provided by ophthalmologists. The 
reported correlation coefficient for the performance of 

Figure 17.5  Manual outlines of cup and disk by three ophthalmologists.
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17.3  Computerized Diagnosis of Glaucoma in Retinal Fundus Images 287

the computerized measurement of the CDRs in compari-
son to the manual measurements ranged from 0.67 to 0.93. 
In contrast, the performance for the classification of glau-
comatous and nonglaucomatous eyes based on CDRs in 
terms of AUC was approximately 0.8–0.9. However, these 
results were evaluated by the use of proprietary data-
bases with different numbers of cases, different fractions 
of glaucoma cases, and a variety of image characteristics, 
which makes the comparison difficult. In our experience, 
it is more difficult to determine cup outlines in non
glaucomatous eyes than in glaucomatous eyes, even for 
ophthalmologists, because nonglaucomatous eyes tend to 
have sloping cups, while glaucomatous eyes have cups that 
are likely to have sharp edges. The establishment of a gold 
standard may be a common problem in CAD research. For 
depth measurement, data from another modality, such as 
HRT, may be used as a reference. For glaucoma diagnosis, 
the results of visual field testing would be considered the 
gold standard; however, some glaucoma cases may not 
exhibit cupping. Other image findings and risk factors 
for glaucoma include disk hemorrhage, shifting of blood 
vessels, and the presence of PPA, and some of these have 
been incorporated into the computerized analysis. As 
more glaucoma diagnosis studies are reported, common 
databases for the evaluation of computerized schemes are 
expected to be established.
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Figure 17.6  The vertical pixel value profiles of the ONHs. Cases with (a) normal and (d) glaucomatous ONHs, (b, e) the smoothed 
profiles of (a) and (d), and (c, f) the second derivatives of (b) and (e) in effective regions (shaded regions) with the selected cup margin 
locations indicated by arrows.

(a)

(b) (c)

Figure 17.7  Depth reconstruction using a stereo image pair. 
(a)  A stereo image pair, (b) the depth map reconstructed by the 
cross-correlation-based method, and (c) the HRT image.
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Detection of Eye Diseases288

17.4 � COMPUTERIZED DIAGNOSIS 
OF DIABETIC RETINOPATHY

Patients with diabetes are at considerable risk of developing 
DR, which is a leading cause of blindness in adults in the 
United States. Although the prevalence is decreasing as a 
result of efforts to reduce the risks, the number of patients 
with severe eye impairment could be further reduced by 
early detection and treatment. DR can be largely classified 
into two stages: nonproliferative retinopathy, which can be 
characterized by the presence of microaneurysms, hemor-
rhages, and hard exudates, and proliferative retinopathy, in 
which the microvascular abnormality progresses and  the 
growth of new vessels occurs. Similar to glaucoma, in 
the early stage, patients often have no symptoms. Although 
the early signs, such as the presence of microaneurysms 
and hemorrhages, can be detected more easily with fluo-
rescein angiograms, the use of fluorescein images is lim-
ited because they require an injection of a contrast media. 
Therefore, annual screening with retinal fundus imaging 
can be effective for the early detection of DR.

A large number of studies on the computerized detection 
of DR-related lesions and the diagnosis of DR on retinal fun-
dus images can be found in the literature. A comprehensive 
review of the algorithms for DR detection can also be found 
(Winder et al. 2009). Many of these studies used relatively 
large numbers of data, some of which was obtained from 
large screening programs, indicating the high prevalence 
of the disease and the interest in this topic. The computer-
ized schemes focus on the two types of lesions as shown 
in Figure  17.8: red lesions, including microaneurysms and 
hemorrhages, and white lesions, including the hard exu-
dates and soft exudates, also called cotton wool spots.

A common strategy for detecting red lesions includes 
the detection of blood vessels, which tend to be the sources 

of false positives. Similar techniques are used for detect-
ing the red and white lesions, the difference being whether 
bright areas with high pixel values or dark areas with low 
pixel values are on the target. Some of the techniques used 
for detecting the red and white lesions include the top-
hat transformation, which was originally proposed for 
fluorescein angiograms (Spencer et  al. 1996; Dupas et  al. 
2010), region growing (Cree et  al. 1997; Usher et  al. 2003; 
Singalavanija et  al. 2006; Nagayoshi et  al. 2009), template 
matching (Singalavanija et al. 2006; Bae et al. 2011), adap-
tive thresholding (Garcia et  al. 2009), and matched filter-
ing (Kande et  al. 2010a). One group employed template 
matching in wavelet-transformed images to simplify the 
parameters of the template that was the Gaussian function 
model for microaneurysms (Quellec et  al. 2008). Based on 
the insight that a large number of false positives appear to 
be nearby blood vessels, two classifiers, one for candidates 
near vessels and one for the others, with different sets of fea-
tures were used for false-positive reduction (Nagayoshi et al. 
2009). Another group proposed a red and white lesion detec-
tion method based on the image subtraction technique, 
in which the differences between the rough and detailed 
images created by the smoothing filters with different sizes 
are highlighted (Hatanaka et al. 2008).

Machine learning techniques have been employed by a 
number of groups. An image is divided into grids, and these 
regions of interest are classified as background (retina), 
vessel, exudates, and hemorrhages by use of an artificial 
neural network (ANN; Gardner et al. 1996). Another group 
employed the kNN for the classification of pixels as normal 
background and candidate pixels, which were then clustered 
using region growing to form candidate lesions (Niemeijer 
et al. 2005, 2007). ANN was also used for the classification 
of a case as normal or DR using image features extracted 
from the whole image (Nayak et al. 2008). In other studies, 

Hard exudates

Microanuerythm

Cotton wool spot

Hemorrhages

Figure 17.8  Examples of red and white lesions.
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17.5  Computerized Diagnosis of Hypertensive Retinopathy and Arteriosclerosis 289

a radial basis function NN and support vector machines 
(SVMs) were used to classify the true lesions and false posi-
tives (Usher et  al. 2003; Acharya et  al. 2009; Garcia et  al. 
2009; Kande et al. 2010).

In majority of the algorithms, the green plane of the color 
images was used because of its high contrast in DR-related 
lesions. In one study, intensity and hue in the HSI space were 
employed as features for coarse segmentation by FCM clus-
tering, which was then followed by fine segmentation using 
morphological operations (Sopharak et al. 2009).

In one of the earlier studies, measurement of the exudates 
was attempted (Phillips et  al. 1993). A multithresholding 
technique was applied to identify large bright exudates and 
small lower-intensity exudates, and then the results were 
compared with the manually extracted regions in terms of 
their overlap, rather than just detection. Generally, in the 
field of CAD, when the centers of a detected area and the 
reference lesion are close or when their overlap is large, it 
is considered a true detection. Conversely, other detected 
regions are counted as false positives. Because of their 
shape and appearance, it may be difficult to evaluate the 
detection performance for hard exudates compared to 
other types of lesions that can be counted and the center of 
which can be more easily determined. It is unclear how the 
sensitivity of hard exudates should be determined. In some 
studies, the case sensitivity in terms of the detection of at 
least one lesion criterion is employed. This criterion is also 
applied to determining DR cases and normal cases, such 
that a case with at least one red or white lesion detected is 
considered a DR case.

Another issue in the evaluation of the algorithms is that 
the identification of red lesions, especially the microan-
eurysms, may be difficult and susceptible to inter-reader 
variability. Manual identification by multiple readers is 
desirable to increase the reliability of the gold standard. 
In some studies, the computer performance is evaluated 
in terms of lesion-based sensitivity, whereas in others, the 
case-based sensitivity for distinguishing between DR and 
non-DR cases is employed. In some studies, the cases are 
classified into normal and different stages of DR based on 
the number of lesions detected.

For the detection of DR, the reported lesion-based sen-
sitivities range from about 75% to 95%, whereas the case-
based sensitivities can be as high as 100%, with specificities 
ranging from 46% to 87%. However, these results were eval-
uated on different databases and, therefore, cannot be com-
pared. To facilitate their comparison, the ROC database 
was provided, and an algorithm contest for the detection of 
microaneurysms was held at the 2009 CAD Conference of 
SPIE Medical Imaging. Brief descriptions of the algorithms 
developed by the participating groups and their results can 
be found in the literature (Niemeijer et al. 2010b). The results 
in terms of the FROC curve are not very high, indicating the 

difficulty of the cases included. The evaluation of the meth-
ods on a common database is desirable and could promote 
the research. However, the development of a high-quality 
open database is not easy and would require a great deal 
of effort.

17.5 � COMPUTERIZED DIAGNOSIS OF 
HYPERTENSIVE RETINOPATHY 
AND ARTERIOSCLEROSIS

As discussed earlier, the noninvasive visualization of vas-
culatures is possible through retinal fundus examination, 
which allows for the detection of arteriolar narrowing and 
vessel occlusions. Studies have reported the association 
of retinal microvascular abnormalities with stroke and 
coronary heart disease, which are major clinical prob-
lems (Wong et  al. 2001; McClintic et  al. 2010). When the 
retina is damaged as a result of hypertension, hyperten-
sive retinopathy is diagnosed, which may cause visual dis-
turbance and vision loss. One early sign of hypertensive 
changes is arteriolar narrowing, and as the disease pro-
gresses, hemorrhages and hard and soft exudates can also 
be observed. Arteriosclerosis is considered a main cause 
of the vessel occlusions. Arteriosclerotic retinopathy may 
not damage vision, but it is a hazardous sign of arterio-
sclerosis in the entire body. In retinal fundus images, 
an early sclerotic change can be seen as arteriovenous 
crossing phenomena, followed by silver- and copper-wire 
arteries (Scheie 1953).

17.5.1 � Measurement of Arteriolar-to-Venular 
Diameter Ratio

Arteriolar narrowing in retinal fundus images is generally 
assessed by the arteriolar-to-venular diameter ratio (AVR). 
For the evaluation of arteriolar narrowing, the idea of 
equivalent central retinal artery width, the formula of which 
is based on the widths of vessel branches and their parent 
trunk, is first proposed (Parr and Spears 1974). Simplified 
versions of this formula for arteries and veins, namely, the 
central retinal artery equivalent (CRAE) and the central ret-
inal vein equivalent (CRVE), are later introduced (Hubbard 
et al. 1999), which are further revised using each of the six 
largest arteries and veins (Knudtson et al. 2003). The ratio 
of CRAE and CRVE is often employed for the measurement 
of AVR on ONH-centered images, as shown in Figure 17.9a. 
Conversely, in regular macula-centered fundus images, 
the ratio of the diameters of a major artery and vein pair 
running side by side each on the upper and lower tempo-
ral sides has been recommended in the guideline in Japan 
(Figure 17.9b). In either case, the measurement is made 
around the ONH, from a ¼- or ½- to a 1-disk diameter from 
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Detection of Eye Diseases290

the ONH margin. Recently, a study reported a comparable 
association for this measurement with cardiovascular risk 
factors using an extended zone up to a two-disk diameter 
(Cheung et al. 2010).

Several semi-automated methods for the measurement 
of AVR have been proposed in which operators manually 
identified the vessels of interest. Subsequently, the diam-
eters were calculated on the basis of the standard deviation, 
σ, of fitted Gaussian curves (Gao et al. 2000), the full-width 
at half maximum of the profile (Pederson et al. 2000), or the 
edges of vessel walls detected by the Sobel operator (Pakter 
et al. 2005). Other studies also proposed the use of Gaussian 
models. An amplitude-modified second-order Gaussian fil-
ter is used for the detection and measurement of retinal ves-
sels (Gang et al. 2002). A difference-of-Gaussians model, in 
which a smaller Gaussian curve is subtracted from a larger 
one, is used for vessels with light reflex (Lowell et al. 2004). 
In these studies, vessel widths were determined as a func-
tion of σ, or by the second derivative of the model; however, 
the AVR was not measured.

For the fully automated measurement of AVR, the 
determination of vessel walls as well as the detection and 
selection of retinal vessels is required. In addition, the iden-
tification of the ONH and the determination of its diameter 
are often necessary for the selection of the measurement 
zone. As described in the earlier sections, numerous stud-
ies on the automated segmentation of retinal vessels and 
the ONH have been proposed. Some of these groups have 
investigated the automated measurement of AVR. After 
the retinal vessels and the ONH are extracted, the ves-
sels were classified into arteries and veins using a feature 
characterizing the central reflex, and those with diameters 
greater than 45 µm were selected for the estimation of AVR 
(Tramontan et al. 2008). Another group investigated several 

classifiers for the classification of arteries and veins, namely, 
kNN, SVM, LDA, and quadratic discriminant analysis, and 
the six widest arteries and veins were selected for AVR mea-
surement (Niemeijer et al. 2010a). Another method that does 
not require vessel detection is proposed (Nam et al. 2009). 
Using a circular intensity profile at a distance from the 
ONH, the valleys, which correspond to dark pixels, are clas-
sified into arteries and veins according to their shapes, and 
the vessels larger than a prespecified value are used for AVR 
calculation.

A method for determining the AVR on macula-centered 
images was proposed (Muramatsu et al. 2011a). The ONH is 
segmented and fitted by an ellipse to select the measure-
ment zone. After detecting the vessels, they are partitioned 
to segments at the bifurcations and intersections, and these 
segments are classified into arteries and veins using a linear 
classifier with the color and contrast features. Two pairs of 
arteries and veins in the upper and lower temporal regions 
are selected by a set of rules based on vessel orientation and 
thickness.

The performance of the automated AVR measurement is 
compared to those manually or semi-manually determined 
measurements using open software (IVAN; the University of 
Wisconsin in Madison, United States), and the high corre-
lations (about 0.9) among the computer estimates and the 
references were reported. For the accurate measurement of 
the AVR, acquisition of high-resolution images of reason-
able quality is essential.

17.5.2 � Detection of Arteriovenous 
Crossing Phenomenon

The arteriovenous crossing phenomenon (AVCP), also 
called arteriovenous nicking, is the state in which a vein 

Artery

Vein

Measurement
zone

(b)

Artery

Vein

Measurement
zone

(a)

Figure 17.9  Selection of arteries and veins for the measurement of AVR in (a) an ONH-centered image and (b) a macula-centered image.
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291Appendix 17.A: Public Databases for Retinal Image Analysis

that is constricted by a stiffened artery appears narrower 
at an artery–vein (AV) crossing. Although there are many 
studies on automated retinal vessel segmentation and 
analysis, to our knowledge, in the literature, there is no 
study focused on the detection of AVCP. Authors have been 
investigating an automated method for the detection of the 
AVCP in retinal fundus images (Hatanaka et al. 2009). Our 
approach consists of the detection of retinal vessels, the 
detection of AV crossings, and the measurement of venous 
diameters at two points, one in the vicinity of the crossing 
and another at a distance from the crossing. After the reti-
nal vessels are segmented by using a double ring filter or 
the other techniques, a ring filter with radius r is scanned 
to search for points where more than four vessels cross the 
perimeter of the ring. If more than four vessels are pres-
ent, the vessels are paired by checking locations across 
the perimeter. The two pairs of vessels are classified as an 
artery pair and a vein pair on the basis of the pixel values 
in the red and green components. Finally, two diameters 
of the veins are measured, one of which is represented by 
the minimum diameter between the crossing point and 
1/2r, and the other is represented by the average diameter 
between 1/2r and the perimeter of the ring. In our study, 
the presence of AVCP is suspected if the ratio of the diam-
eters is less than 0.8. The performance of the computerized 
scheme in terms of crossing detection and AVCP detection 
is currently not very high, due in part to the lack of a high-
quality database; therefore, improvement is expected in 
the future.

17.6 � EMERGING TOPIC: COMPUTER 
ANALYSIS OF OPTICAL 
COHERENCE TOMOGRAPHY

In recent years, OCT has been used frequently in oph-
thalmology examinations. As a result, it has gained much 
interest in the research community. With OCT, a cross-
sectional view of the retina can be obtained, allowing for 
the quantitative measurement of retinal nerves and the 
detection of macular holes and the other macular patholo-
gies. There are only a few studies related to CAD on OCT 
at present; however, the number is expected to increase in 
the future.

An automated layer segmentation technique was pro-
posed and tested on a small number of OCT cases (Lu 
et  al. 2010). By detecting retinal blood vessels using an 
iterative polynomial smoothing technique, the retinal lay-
ers are divided into vessel and nonvessel sections. On the 
basis of variation across the boundaries, the borders of the 
nonvessel sections are detected, and the layers are classified 
into five retinal layers. Another group investigated an image 

registration method using probabilistic modeling using an 
expectation–maximization algorithm for the alignment of 
successive OCT scans, which potentially reduces measure-
ment variability and facilitates longitudinal assessment 
(Zhu et al. 2011).

Using spectral domain OCT, which provides a high-
quality 3D image as a result of its faster acquisition and 
high resolution, investigators proposed an automated 
scheme for the segmentation of the optic cup and neural 
canal opening (NCO), which may correspond to the disk 
margin in fundus photographs (Hu et  al. 2010). In this 
method, layer surfaces are first segmented on the original 
image, and a projection image, similar to a fundus pho-
tograph, is created by taking some thin layers. By trans-
forming the image into polar coordinates and using it as 
the cost function, the NCO and cup boundaries are seg-
mented. They reported a relatively high correlation of 0.85 
for the CDR when comparing the algorithm to the refer-
ence standard.

17.7  CONCLUSION

Retinal examination using retinal fundus images can 
be effective for the early diagnosis of glaucoma, DR, 
and hypertensive retinopathy, and it has the potential 
to reduce the number of patients who suffer vision loss. 
Fundus photographs are frequently obtained at oph-
thalmology visits and in certain screening programs. 
Computer analysis of the retinal images may assist oph-
thalmologists and other physicians in fast, consistent, 
and accurate reading of the images. Many studies have 
been reported on automated segmentation of the ONH 
and retinal blood vessels. Using these basic algorithms, 
investigators have proposed the integrated schemes for 
the diagnosis of the eye diseases. Although the perfor-
mances reported for ONH and vessel detections are rela-
tively high, some improvements are expected for disease 
detection and quantification schemes. Investigations of 
new algorithms for OCT and multimodality approaches 
may be interesting future topics.

APPENDIX 17.A: PUBLIC DATABASES 
FOR RETINAL IMAGE ANALYSIS

In this table, concise information about the public data-
bases (some require a registration before downloading) is 
provided: (a) research groups; (b) website; (c) the number of 
images; (d) image resolution; (e) image format; and (f) sup-
plemental files, that is, the gold standard.
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Detection of Eye Diseases292

Structured Analysis of the Retina (STARE; Hoover et al. 2000; 
Hoover and Goldbaum 2003)

a.	 The University of California, San Diego and others
b.	 http://www.ces.clemson.edu/~ahoover/stare
c.	 81 ( for ONH detection), 21 ( for vessel segmentation)
d.	 700 × 605
e.	 Portable pixmap
f.	 Vessel images for 20 cases

Digital Retinal Images for Vessel Extraction (DRIVE; Staal et al. 
2004)

a.	 Utrecht University, the Netherlands
b.	 www.isi.uu.nl/Research/Databases/DRIVE/
c.	 40 (20 training cases, 20 test cases)
d.	 565 × 584
e.	 TIFF
f.	 Vessel images

Online Retinal Image Archive (ARIA) a.	� Royal Liverpool University Hospital Trust and University of 
Liverpool, UK

b.	 www.eyecharity.com/aria_online.html
c.	 Multiple images from over 100 patients
d.	 768 × 576
e.	 JPEG
f.	� Vessel images, ONH outlines, and fovea locations for most images

Retinal Vessel Image set for Estimation of Widths 
(REVIEW; Al-Diri et al. 2008)

a.	 The University of Lincoln, UK
b.	 http://reviewdb.lincoln.ac.uk
c.	 14 full images, two regions of interest
d.	 1360 × 1024, 2160 × 1440, or 3584 × 2439 (full images)
e.	 JPEG or BMP
f.	 5066 vessel profiles measured on 193 vessel segments

Standard Diabetic Retinopathy Databases calibration levels 0 and 
1 (DIARETDB0, DIARETDB1)

a.	� Lappeenranta University of Technology, University of Kuopio, 
and University of Joensuu in Finland

b.	 http://www2.it.lut.fi/project/imageret
c.	 130 (DB0), 110 (DB1)
d.	 1500 × 1152
e.	 PNG
f.	� Presence of retinopathy signs (DB0), fused annotation images 

of retinopathy lesions marked by four observers (DB1)

Methodes d’Evaluation de Systemes de Segmentation et 
d’Indexation Dediees a l’Ophtalmologie Retinienne 
(MESSIDOR)

a.	 Program partners in France
b.	 http://messidor.crihan.fr/download-en.php
c.	 1200
d.	 1440 × 960, 2240 × 1488, or 2304 × 1536
e.	 TIFF
f.	� Retinopathy and macular edema grades, and manual ONH 

contours by separate research group (Aquino et al.  2010)

Retinopathy Online Challenge (ROC) a.	 The University of Iowa and others
b.	 webeye.ophth.uiowa.edu/ROC/var.1/www/
c.	 100 (50 training cases, 50 test cases)
d.	 Ranging from 768 ×  576 to 1394 × 1392
e.	 JPEG
f.	 Microaneurysm locations (training cases only)

Hamilton Eye Institute Macular Edema Dataset 
(HEI-MED; Giancardo et al. 2011)

a.	� The University of Tennessee, Oak Ridge National Laboratory, 
and the Universite de Bourgogne

b.	 http://vibot.u-bourgogne.fr/luca/heimed.php
c.	 169
d.	 2196 × 1958
e.	 JPEG
f.	� Bright lesion location (e.g., exudates, cotton wool spots, 

and drusen)
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