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ABSTRACT 

This paper describes an automatic approach for anatomy partitioning on three-dimensional (3D) computed-
tomography (CT) images that divide the human torso into several volume-of-interesting (VOI) images based on 
anatomical definition. The proposed approach combines several individual detections of organ-location with a group-
wise organ-location calibration and correction to achieve an automatic and robust multiple-organ localization task. The 
essence of the proposed method is to jointly detect the 3D minimum bounding box for each type of organ shown on CT 
images based on intra-organ-image-textures and inter-organ-spatial-relationship in the anatomy. Machine-learning-based 
template matching and generalized Hough transform-based point-distribution estimation are used in the detection and 
calibration processes. We apply this approach to the automatic partitioning of a torso region on CT images, which are 
divided into 35 VOIs presenting major organ regions and tissues required by routine diagnosis in clinical medicine. A 
database containing 4,300 patient cases of high-resolution 3D torso CT images is used for training and performance 
evaluations. We confirmed that the proposed method was successful in target organ localization on more than 95% of CT 
cases. Only two organs (gallbladder and pancreas) showed a lower success rate: 71 and 78% respectively. In addition, we 
applied this approach to another database that included 287 patient cases of whole-body CT images scanned for positron 
emission tomography (PET) studies and used for additional performance evaluation. The experimental results showed 
that no significant difference between the anatomy partitioning results from those two databases except regarding the 
spleen. All experimental results showed that the proposed approach was efficient and useful in accomplishing 
localization tasks for major organs and tissues on CT images scanned using different protocols.  

Keywords: 3D CT images, anatomy partitioning; organ localization; generalized Hough transform.  

1. INTRODUCTION 
Anatomy partitioning of the human body that aims to identify the scope of different organ and tissue regions on 

computed-tomography (CT) images. It is an essential step in recognizing anatomical structures necessary to develop 
computer-aided diagnostics and surgical systems. Successful anatomy partitioning can considerably simplify established 
image-processing algorithms such as organ segmentation, image registration, and lesion detection. In addition, it enables 
us to use the data-mining and image-retrieval concepts and techniques to discover knowledge based on big datasets of 
medical images.  

The essence of anatomy partitioning is to localize all organs and tissues on a CT scan. The technical difficulty of the 
partitioning process concerns using a single approach or scheme to solve many different organ localization tasks. The 
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most important criterion for evaluating the performance of the partitioning process is its accuracy in adapting to inter-
patient variation on extensive CT cases scanned using different protocols. Many studies have been reported on organ 
localizations on CT images based on machine-learning approaches [1,2]. For example, Zheng et al. proposed a marginal 
space learning approach to locate heart, liver, and other organs on CT and magnetic resonance imaging [3,4]. Dikmen et 
al. presented a learning method to detect the anatomical landmarkers on CT images [5]. Criminisi et al. used decision 
forests to locate several major organs on whole-body CT images [6]. These previous studies showed the acceptable 
performance of multiple organ localization on 3D medical images. However, the targets in these studies were limited to a 
few major organs and were easy for recognition. The remaining challenge is to localize other targets such as the uterus, 
gallbladder, and different vertebrae, which is commonly required in the anatomy partitioning process. Furthermore, most 
performance evaluations in previous studies were based on a handful of patient cases that failed to show the robustness 
of localization methods.  

In this study, we propose an approach to realize automatic partitioning of the torso region on CT images. The target 
organ partitions include 35 VOIs defined as the minimum bounding boxes of major organs and tissues in routine 
diagnosis. This approach combines an independent organ localization method [7–9] and a group-wise calibration and 
correction technique. Machine-learning-based object detection and generalized Hough transform-based point-distribution 
estimation is used in the localization and calibration processes. These are described in the following section. 

2. METHODS 
2.1 Outline 

The proposed approach is constructed according to two major processing steps: (1) single target-organ localization 
that finds the bounding box of the target organs based on window sliding and pattern matching on the feature space; (2) 
group-wise calibration and correction based on the spatial relations among multiple organ locations. The first step 
focuses on identifying local image similarity of a target organ and output likelihood values of the target organ location 
on each pixel of a CT scan. The second step emphasizes validating the spatial relationships of the detected organ 
locations based on human anatomy. We determine the final locations of CT scanned organs by balancing the local image 
similarity (likelihood value) and global spatial relationship of the multiple organ locations (prior probability) obtained in 
Step 1 and 2, respectively. The flowchart of the proposed approach is shown in Fig.1. Details of each processing step are 
described as follows. 

2.2 Single organ localization 

The basic unit of anatomical partitioning is an organ location defined by a 3D box that bounds the target organ region 
tightly and accurately. The goal of this processing step is to detect a candidate list of this bounding box for each target 
organ on a CT scan respectively. The list’s order of priority for each candidate is ranked by the likelihood value 
(similarity to the target organ) of a detected box. Our approach for organ localization includes two stages. In an offline 
training stage, we search the discriminative features of species of organs by using a trial-and-error approach based on 
many training CT scans in which the target-organ location has been sketched manually. We then build an ad-hoc feature 
space with a classifier to distinguish the target organ from the remaining regions. In the testing stage, a sliding window is 
used to scan all pixels on an imputed CT scan to classify on the corresponding feature space (i.e., determine whether the 
current location is the target organ).  

In our previous research [7], we proposed a universal method for detecting organ locations on 3D CT scans. Instead of 
sliding a window directly on a 3D-image space, our method trained three independent 2D detectors to capture the 
different sections of a 3D target’s appearance in three bodily directions, multiple image scales and orientations by using 
ensemble-learning approach. The outputs of our 2D detectors were integrated based on a collaborative majority voting in 
3D to enhance the robustness of the final localization result. We established the 2D detectors as “weak” so that they only 
needed to detect a part of the organ region. In addition, we allowed several false positives in the results. Majority voting 
of multiple 2D candidates from three independent directions can combine all weak 2D detectors into a “strong” 3D 
detector, which can then indicate the bounding box of the target organ stably and accurately.  

The output of organ localization is a list of candidates (3D boxes) that passed the majority voting process. A candidate 
was defined as a 3D box that met the condition in which more than one section of the 3D box in each 2D direction is 
detected by the 2D detectors. Candidate priority is defined as the sum of the numbers of 2D sections detected by all 2D 
detectors. The likelihood value of the candidate is calculated by normalizing the priority based on the volume of a 
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of most organ types can be detected correctly on a CT scan is possible. The purpose of this processing step is to identify 
a few outliers in the detected organ locations on a CT scan. The solution is to use the spatial relationships among the 
multiple organs to constrain all candidates of the detected organ locations on a CT scan. This method employs 
generalized Hough transform to conduct a group-wise calibration based on detected candidates of the multiple organ 
locations. It also estimates the reasonable locations of the outliers based on prior anatomical knowledge derived from the 
training dataset.  

The process involved in this step is designed as an iteration to update and sort the candidate list of each organ location 
obtained from Step 1. The goal of this step is to ensure the final list of top candidates properly represent all target organ 
locations. We define a global cost function based on the sum of likelihood values of current top candidates with the 
condition (constraint) that the spatial relations between the top candidates are valid. This validation is based on the 
minimum distance of each selected top candidate to a point distribution of organ centers obtained from a training dataset. 
In fact, the generalized Hough transform is used to realize the validation process. Here, the detection of a single organ 
casts probabilistic votes for locations of the other organs in a CT scan. We used the top candidate of each organ to vote 
the potential central locations (point cloud) of the other organs. We consider the point distribution as a prior probability 
of the multiple organ center positions on a CT scan. We use a K-nearest neighbor search within the candidates list to 
renew and select the top candidate by maximizing the global cost function defined by the likelihood values. 

These processing steps are repeated, thereby generating the point cloud to show the prior center position of each organ 
and re-ranking the top candidate for organ locations. These iterations are performed until the top candidate in each list 
has no change (see Fig. 1). A maximum number of iterations was established to terminate this process, thereby avoiding 
an infinite loop.  

3. EXPERIMENT AND RESULTS 
Two datasets that included 4,300 cases of high-resolution 3D volumetric CT scans and 287 low-resolution PET-CT 

scans were used in our experiment. We used two kinds of multi-slice CT scanners (one from GE Healthcare and another 
from Philips Medical Systems) to scan high-resolution CT images. Each CT scan used a common protocol and covered 
the entire human torso region by approximately 800–1200 axial CT slices with an isotopic spatial resolution of 
approximately 0.6–0.7 mm and 12-bits density (CT number) resolution. The low-resolution CT images were scans 
produced for PET examinations with 1.2 mm spatial resolution in the axial section and 5.0 mm slice spacing. The age of 
the patients from which these CT scans derived ranged from 25 to 92 years. All CT scans were from patients having 
specific real or suspicious abnormalities.  

Thirty-five major organs and tissues were selected as targets for evaluating the performance of the organ localization 
method. These included: heart, liver, gallbladder, spleen, pancreas, stomach, bladder, left and right lungs, left and right 
kidneys, left and right femur-heads, left and right psoas major muscles, uterus and rectum, abdominal rectus muscle, 
inferior vena cava (IVC) with ventral aorta, and bodies of vertebrae (12 thoracic and 5 lumbar). We manually marked the 
3D locations of these targets in 300 3D high-resolution CT scans in order to train the 2D detectors. This resulted in 
4,000–10,000 positive and 40,000–100,000 negative 2D training samples used to train the 2D detectors for organs of 
each sagittal, coronal, and axial direction. The detectors for each target were trained separately except for those detecting 
vertebrae that shared the same three 2D detectors for both thoracic and lumbar spines. The trained detectors were applied 
to localize the 35 target organs and tissues in the other 4,000 3D high-resolution CT and 287 low-resolution PET-CT 
scans.  

We first conducted subjective evaluations of the anatomical partitioning on the multiple organ localization results. We 
then randomly selected several CT scans for quantitative evaluations. The authors of our study manually labeled the 
ground-truth of each target organ location (3D box) and measured the volume variance and center shift between the 
detected organ location and ground truth. An example of the detected organ locations in 3D CT scans is shown in Fig. 2. 
A typical computing time was 16 s per CT scan and was accomplished using a computer equipped with an Intel 
Core2Duo 2.23 GHz CPU.  
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compared to those of the remainder regions in the CT images. We determined that the group-wise calibration and 
correction process considerably enhanced the robustness in these cases in which the trained 2D detectors were not 
sufficiently strong. For example, in the case of gallbladder localization, the success rate improved by 10% after group-
wise calibration and correction. For our quantitative evaluation, the center-shift distances between the localization result 
and gold standard were less than 50 voxels in most CT cases, with the modes ranging from 10 to 20 voxels. The 
histograms of volume variance in most organs were distributed between -20 and 20% with modes near zero, except with 
respect to the bladder and liver. These evaluation results showed that the proposed approach located the center position 
approximately and determined the size of the bounding box of the target organ regions. However, in cases in which the 
target organ has a large variance in volume (bladder) or asymmetrical shape (liver), the accuracy of the detected 
bounding rectangle must be improved.  

Experimental results of localizations on PET-CT scans showed that the performance of 2D detectors had considerable 
degradations because of the worse image quality and lower spatial resolution of the PET-CT scans compared to the high-
resolution CT images used in training. However, we found that the final success rates of localization for those organs did 
not change considerably except with respect to the spleen (down from 95 to 88%) and pancreas (up from 72 to 99%). 
These results showed that the group-wise calibration and correction were efficient to enhance the robustness of the 2D 
detectors. From the quantitative evaluations, we confirmed that the accuracy of the detected box was degraded to 4–29 
voxels on center distance and from -50 to 10% on volume variance compared to the gold standards [9]. These results 
showed that organ location accuracy was fundamentally dependent on the performance of 2D detectors assessed during 
the training process. Group-wise calibration can enhance the robustness of the localization process. However, it is not 
very helpful as a means to improve the accuracy (center location and volume) of the detected 3D bounding box. 

In conclusion, we proposed a universal approach that can be used to partition the human torso region automatically by 
localizing major organs and tissues on 3D CT scans. This approach was applied to 35 organ and tissue regions. The 
efficiency and accuracy of the proposed approach were validated and satisfactory performance was proven on more than 
4,000 real clinical CT scans.  
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