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Textural features can be useful in differentiating between benign and malignant breast lesions on
mammograms. Unlike previous computerized schemes, which relied largely on shape and margin fea-
tures based on manual contours of masses, textural features can be determined from regions of interest
(ROIs) without precise lesion segmentation. In this study, therefore, we investigated an ROI-based fea-
ture, namely, radial local ternary patterns (RLTP), which takes into account the direction of edge patterns
with respect to the center of masses for classification of ROIs for benign and malignant masses. Using an
artificial neural network (ANN), support vector machine (SVM) and random forest (RF) classifiers, the
classification abilities of RLTP were compared with those of the regular local ternary patterns (LTP),
rotation invariant uniform (RIU2) LTP, texture features based on the gray level co-occurrence matrix
(GLCM), and wavelet features. The performance was evaluated with 376 ROIs including 181 malignant
and 195 benign masses. The highest areas under the receiver operating characteristic curves among three
classifiers were 0.90, 0.77, 0.78, 0.86, and 0.83 for RLTP, LTP, RIU2-LTP, GLCM, and wavelet features,
respectively. The results indicate the usefulness of the proposed texture features for distinguishing
between benign and malignant lesions and the superiority of the radial patterns compared with the
conventional rotation invariant patterns.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Breast cancer is the most frequent cancer and constitute more
than 20% of all but skin cancers in women worldwide [1]. Early
detection is the key to reduce the number of cancer deaths and to
improve patients' quality of lives. Mammography is considered an
effective screening method for women with normal risk [2–4]. It is
not easy, however, to read a large number of mammograms
accurately and consistently in a limited time. It is known that
about 30% of cancers are missed on mammograms and the
reported positive biopsy rates range from 12% to 46% [5–9]. Even
in multimodality reading, it is important to assess images of each
modality independently and thoroughly. Studies have suggested
that the computer-aided detection and diagnosis (CAD) can con-
tribute to accurate diagnosis of mammograms [10–15].

Computerized detection of microcalcifications on mammo-
grams has very high accuracy. On the other hand, computerized
classification of malignant and benign lesions still has some room
matsu).
for improvement. A number of studies investigating computerized
methods for differentiating between malignant and benign masses
have been proposed [16,17]. Tan et al. [18], in their recent study,
investigated a variety of different types of image features for
classification of breast masses on mammograms. They found that
the features related to mass shape, isodensity, and presence of fat
were most frequently selected by their feature selection algorithm
in a tenfold cross validation scheme. The reliability of these fea-
tures depends on the accurate determination of mass contours.
They also discussed the difficulty of accurate determination of
spiculation features due to tissue overlap.

We have been investigating the similar-image retrieval method
for assisting the radiologists' classification of breast lesions on
mammograms [19–23]. Our proposed similarity measures coupled
with machine learning method correlate well with the radi-
ologists' subjective similarity for breast lesions, and the potential
utility of the reference images was indicated by the observer
studies. For determination of similarity of breast masses, the shape
irregularity and margin characteristic features were found to be
useful, suggesting the importance of mass outlines which were
manually determined in our studies.
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In clinical practice, it is not practical to obtain precise outlines
of masses owing to busy routine work. In addition, manual out-
lines provided by different users would vary. Such a “personalized”
system may be suitable for an image retrieval system, wherein
preferred reference images that a particular user consider similar
are selected. However, for a system providing the likelihood of
malignancy of lesions, it is undesirable. Automatic segmentation of
masses can provide consistent outputs but is not easy when tis-
sues overlap with masses. Therefore, the objective of this study is
to propose a method that does not require precise outlines of
masses.

Recently several groups have proposed mass classification
methods based on wavelets and texture features obtained from
regions of interest (ROIs) or small patches [24–30]. Tan et al.
proposed a computerized scheme to classify mammographic cases
into cancer or benign cases on the basis of image features obtained
fromwhole breast regions of four-viewmammograms [24]. A large
number of image features, including pixel value statistical features,
cumulative projection histogram features, and textural features
based on gray level run length and gray level co-occurrence matrix
(GLCM), were considered. Although the classification accuracy in
terms of the area under the receiver operating characteristic curve
(AUC) was not very high, they concluded that such a scheme could
become a supplemental system by potentially providing infor-
mation different from the conventional lesion-based schemes.
Eltoukhy et al. compared methods based on wavelet and curvelet
transforms for classification of malignant, benign and normal ROIs
[25]. Using the 100 largest coefficients from each of 4 decomposi-
tion levels as a feature vector, they obtained a high classification
accuracy with a relatively small dataset with mixed abnormalities
including masses, microcalcifications, architectural distortions,
and asymmetries. do Nascimento et al. investigated mass classifi-
cation methods using discrete wavelet transform (DWT) combined
with different classifiers [26]. A large number of wavelet coeffi-
cients obtained from each decomposition level was reduced by the
singular value decomposition to constitute a feature vector. They
obtained a high classification performance using a polynomial
classifier compared with the support vector machine, decision
tree, and k-nearest neighbor classifiers.

Ergin et al. proposed a 3-class classification method, i.e., clas-
sification of normal, benign, and malignant cases, based on DWT
and statistical features [27]. DWT was first applied, and features
were extracted from the subbands using the histogram of oriented
gradients, dense scale invariant feature transform, and local con-
figuration pattern, which is local binary pattern (LBP) [28] com-
bined with variance. Lahmiri et al. proposed a hybrid method
combining DWT and Gabor filter for classification of medical
images including breast cancer and normal mammograms [29].
Gabor filters with 4 directions and 3 scales were applied to the
high frequency component of the wavelet transformed image, and
the entropy and uniformity statistics were used as the feature
vector. Reyad et al. also investigated different ROI-based features,
including statistical, LBP, and multi-resolution analysis features,
for classification of cancer and normal mammograms [30].

Chakraborty et al. proposed an angle co-occurrence matrices
(ACM), which is a combination of Sobel filter and GLCM, for clas-
sification of benign and malignant masses [31,32]. ACM is derived
using gradient magnitude and orientation to describe edge pat-
terns. Their method, however, requires the mass segmentation,
and ACM was computed in margin area using rubber-band
straightening transform [33]. Other groups have also used LBP
for false positive reduction in computerized mass detection
[34,35]. The results from these studies indicate that the edge
characteristics represented by the various features are useful in
classification of mammograms. In some of these studies, edge
orientation was not considered. For example, in [25], the largest
coefficients were selected regardless of the pixel location, and in
[27,35] rotation invariant features were employed. Other studies
showed that the classification accuracy was decreased by use of
rotation invariant features [30], and edge orientation is an
important characteristic for lesion classification [31,32].

One of the major characteristics of malignant masses is spicu-
lation. While benign masses have round or oval shapes with clear
margin, malignant masses with spicula have jagged edges.
Therefore, for the classification of benign and malignant lesions,
edge orientation with respect to the center of a mass is important.
In our preliminary study [36], we proposed a radial local ternary
pattern (RLTP) and tested its potential utility with a small dataset.
In that study, small sub ROIs (patches) were selected at char-
acteristic points (close by mass outlines) for determination of RLTP,
and the effect of different parameters and its superiority to regular
LBP and local ternary pattern [37] were not investigated. In this
study, we examined the usefulness of RLTP, performed extensive
experiments to study the effect of different parameters, and
compared with GLCM and DWT-based features for classification of
benign and malignant masses on mammograms. The remainder of
this paper is organized as follows. The image database is described
in Section 2. The feature extraction and classification methods are
described in Section 3. The experimental results and discussion are
presented in Sections 4 and 5, respectively, and Section 6 con-
cludes the paper.
2. Image database

Digital mammograms were obtained from Nagoya Medical
Center, Nagoya, Japan, using one of the following systems: phase
contrast mammography (PCM) system (Mermaid or Pureview,
Konica Minolta Holdings, Inc.), direct conversion digital mammo-
graphy system (Amulet, Fujifilm Corporation), and computed
radiography (CR) systems (Mammomat 3000, Siemens, with
C-Plate, Konica Minolta, or Profect, Fujifilm). The pixel sizes of the
original images are 25 μm (PCM), 43.72 μm (C-Plate), and 50 μm
(Amulet and Profect), and the grayscales are 10 bits (Profect), 12
bits (PCM and C-Plate), and 14 bits (Amulet). The study was
approved by the institutional review board.

We employed the dataset used in the previous study [23]. For
that study, mammograms with a history of biopsies were con-
secutively collected, and benign cases with follow-up ultrasound
examinations were added from the same period. The total number
of cases was 512, including the findings of microcalcifications and
distortion. Images were retrospectively reviewed by radiologists,
and square ROIs were obtained for mass lesions. The original
radiologic and pathologic reports were available if needed. ROIs
were extracted from both craniocaudal and mediolateral oblique
views if the entire lesion was visible. In the previous study, masses
with 9 pathologic types were used [23]. The database consists of
376 ROIs, including 195 benign and 181 malignant masses. The
malignant cases were confirmed by biopsy or surgery, and benign
cases were confirmed through biopsy or follow-ups by mammo-
graphy and ultrasonography. For image analysis, the pixel size and
grayscale of ROIs were unified to 50 μm and 10 bits, respectively,
by linear interpolation. The size of the ROIs varied from 168�168
to 1888�1888 pixels.
3. Methods

3.1. RLTP-based features

LBP is a method to describe an image texture or local intensity
information by a binary sequence [28]. The binary patterns are
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determined for every pixel in the patch, and the histogram of the
patterns is used as features for classification of the patch. The
number of possible patterns, i.e., the number of the histogram
bins, is 2P for LBP, where P is the number of neighbor pixels to be
compared with a pixel of interest. Ojala et al. suggested that a
majority of the meaningful patterns can be represented by the
fundamental “uniform” patterns and all the other patterns can be
grouped into the “non-uniform” pattern, which greatly reduces
the number of possible patterns to P(P�1)þ3 [28].

LBP was originally proposed for textural pattern classification.
For this purpose, rotation invariant LBP was designed to obtain the
same feature value when an image is rotated [28]. However, as
described earlier, for classification of benign and malignant breast
masses, the edge orientation at the margin is an important char-
acteristic. Therefore, we propose a rotation that a binary cord is
shifted with respect to the mass center and defined by

RLBPP;R ¼ RORðLBPP;R; sÞ s¼ θ � P
2π

�����
�����

�����
)�����

(
ð1Þ

θ¼ tan �1ym�yc
xm�xc

ð2Þ

where ROR(LBPP,R, s) performs a circular bit-wise right shift on the
P-bit number s times, xkk gives the integer nearest to x, and ðxc; ycÞ
and ðxm; ymÞ are the coordinates of the pixel of interest and the
Fig. 1. Illustration of differences betw
pixel of mass center, respectively. In this study, we assumed that
the center of a mass is located at the center of ROI. By applying the
Eqs. (1) and (2), the binary sequence always began from the pixel
closest to the center of a mass. Fig. 1 illustrates the coding of LBP
and the relationships with variant LBPs, i.e., rotation invariant LBP
(RI-LBP), RI-LTP, and RLTP, which is described below. We also
investigated whether we could reduce the number of histogram
bins by combining some patterns. After the sequence was rotated
and aligned, P patterns were reduced to 4 patterns by combining
the patterns corresponding to the edge in the inward, outward,
clockwise, and counterclockwise directions, as shown in Fig. 2. In
this figure, examples of “uniform” patterns when P¼8 are shown,
assuming that the shaded pixels correspond to the one closest to
the mass center.

Since actual images generally contain some noise, LTP was
proposed [37] to include a threshold, t. The obtained ternary code
is split into 2 sets of binary codes corresponding to the positive
and negative halves. In this study, the two histograms corre-
sponding to the positive and negative patterns are combined by
summation of corresponding bins. The pattern histograms were
treated as the feature vectors and passed to classifiers.

Ojala et al. also suggested the inclusion of a local variance
measure determined using P pixels [28]. In general, estimation of
variance becomes more accurate by increasing the sample.
Therefore, in this study, variance was determined in an area
een LBP, RI-LBP, RI-LTP, and RLTP.



Fig. 2. Histogram bin reduction by combination of radial and tangential patterns.
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instead of P sample points and defined as

VARR ¼
1

2Rþ1ð Þ2
Xxc þR

i ¼ xc �R

Xyc þR

j ¼ yc �R

gi;j�μ
� �2

ð3Þ

μ¼ 1

2Rþ1ð Þ2
Xxc þR

i ¼ xc �R

Xyc þR

j ¼ yc �R

gi;j ð4Þ

where gi;j is the pixel value at coordinate (i, j). As in [28], con-
tinuous values of VAR measures were quantized to B bins based on
the percentile of combined data. The VAR histogram was con-
catenated to the LTP histogram and passed to the classifiers.

3.2. GLCM-based features

GLCM is another method that is frequently used for texture
analysis. The matrix is computed to describe the distribution of
pixel values in relation to the relative position of the pixels. The
statistics of the matrix are employed as the texture features. In this
study, Haralick's textural features [38] were determined and their
ability for the classification of breast images was compared with
that of RLTP. The feature set includes the angular second moment,
contrast, correlation, sum of squares, inverse difference moment,
sum average, sum variance, sum entropy, entropy, difference var-
iance, difference entropy, two information measures of correlation,
and dissimilarity. The definitions of these features are given in [38]
and [39].

Four GLCMs were computed for the angles of 0°, 45°, 90° and
135°. In this study, we proposed RLTP to make binary pattern
radially aligned. To obtain radially aligned GLCM, the ROIs were
spread open by transforming the images to the polar coordinate
system with respect to the mass center, so that the rows and
columns of the image correspond to the radial and angular
directions, respectively, as shown in Fig. 3. The GLCMs and cor-
responding textural features were determined with the original
and the transformed images for comparison. In the transformed
images, the pixels in the original ROIs were only used for the
computation of the GLCMs. The features determined with the
different angular matrices were handled separately constituting a
56-dimensional (14�4) feature vector, and also represented by
the average and maximal values as a 28-dimensional (14�2)
feature vector.

3.3. DWT-based features

DWT can also be used to represent image texture and has been
increasingly used for image classification. In this study, a multi-
level two-dimensional DWT was applied to the ROIs using
Daubechies-4 function. As a result, an image is decomposed into
low frequency subbands (LL), horizontal high frequency subbands
(HL), vertical high frequency subbands (LH), and diagonal high
frequency subbands (HH). The wavelet coefficients were treated as
the features. For reducing the number of features, uses of the
coefficients from the diagonal subbands (LL and HH) and the
highest 100 coefficients from each subband were tested.

3.4. Classification

The classification of benign and malignant ROIs was performed
using an artificial neural network (ANN), support vector machine
(SVM) and random forest (RF) classifiers. For ANN, the three
layered feedforward network with the backpropagation algorithm
was used. The numbers of hidden units and training epochs were
optimized experimentally. For SVM, linear, polynomial, radial, and
sigmoid basis functions were tested with selected feature patterns.
Overall, use of the linear basis function provided the best AUCs,



Fig. 3. Image transformation for GLCM computation.

Table 1
The effects of downsizing and grayscale reduction on AUC.

ROI size Number of grayscale AUC
ANN SVM RF

Original (50 μm/pixel) 8 bits 0.752 0.696 0.757
1/4 of original 8 bits 0.798 0.753 0.814
150�150 8 bits 0.890 0.874 0.843
200�200 8 bits 0.900 0.881 0.842
250�250 8 bits 0.882 0.874 0.825
300�300 8 bits 0.875 0.849 0.801
200�200 10 bits 0.884 0.877 0.842

Table 2
The effects of ROI size and R parameter with and without bin reduction.

ROI size R AUC

C. Muramatsu et al. / Computers in Biology and Medicine 72 (2016) 43–53 47
and therefore, the linear kernel was employed in this study. For RF,
the number of trees was set to 500 and the number of variables
randomly sampled as candidates at each split was square root of
the number of features. In order to reduce the high dimensions of
feature vectors, principal component analysis (PCA) was applied,
and the optimal number of input units (principal components,
PCs) was selected by the experiment. Because of the relative
robustness to the large input features and for providing a large
number of variables for decision trees, the original feature vectors
were also tested for RF. Leave-one-out cross validation was
employed for evaluation, in which at each fold all the ROIs that
belong to the same patient were removed as a test set and the
remaining ROIs were used for training.

The ability of the proposed RLTP-based features and other
features for classification between benign and malignant masses
were evaluated using the area under the receiver operating char-
acteristic (ROC) curve (AUC).
Bin reduction No bin reduction

ANN SVM RF ANN SVM RF

100�100 1 0.831 0.824 0.779 0.814 0.811 0.775
100�100 2 0.861 0.855 0.814 0.856 0.845 0.825
100�100 3 0.875 0.873 0.857 0.868 0.874 0.860
150�150 2 0.857 0.836 0.805 0.836 0.826 0.786
150�150 3 0.890 0.874 0.843 0.872 0.868 0.852
150�150 4 0.876 0.877 0.854 0.879 0.878 0.866
200�200 2 0.829 0.817 0.771 0.823 0.808 0.786
200�200 3 0.900 0.881 0.842 0.893 0.883 0.855
200�200 4 0.891 0.886 0.854 0.882 0.871 0.853
200�200 5 0.882 0.881 0.860 0.875 0.874 0.872
250�250 3 0.882 0.874 0.825 0.882 0.861 0.842
250�250 4 0.892 0.876 0.865 0.886 0.876 0.869
250�250 5 0.897 0.895 0.864 0.884 0.885 0.871
250�250 6 0.895 0.886 0.859 0.883 0.883 0.873
300�300 4 0.883 0.872 0.835 0.872 0.862 0.838
300�300 5 0.887 0.877 0.853 0.881 0.878 0.847
300�300 6 0.893 0.890 0.862 0.883 0.878 0.879
300�300 7 0.894 0.892 0.870 0.883 0.873 0.881
350�350 4 0.878 0.869 0.836 0.881 0.856 0.841
350�350 5 0.896 0.887 0.858 0.881 0.867 0.846
350�350 6 0.895 0.887 0.861 0.885 0.873 0.869
350�350 7 0.892 0.884 0.851 0.885 0.881 0.867
4. Experimental results

4.1. LTP parameters

For reducing the processing time and possibly reducing the
effect of noise, the images were down sized by a factor of 2 in both
directions by averaging. We also investigated the effect of image
normalization. The images were subsampled or magnified by lin-
ear interpolation so that all ROIs have the same matrix size. By
normalizing the ROI size, the effect of difference in lesion sizes
may be reduced. The effect of grayscale reduction was also
examined. Other parameters were kept the same, i.e., R¼3, P¼8,
and the bin reduction to 4, for this comparison. The results of AUCs
showed that the classification performance was improved because
of the size reduction by 2 while the effect of bit reduction was
small as shown in Table 1. Note that when the grayscale was
reduced, the threshold value for LTP was also changed accordingly
by a factor of 4. By image normalization, classification ability was
generally improved.

Using the normalized ROIs, optimal R and P parameters were
investigated. Combinations of ROI size and R parameter were
tested as the optimal R may change with the ROI size. The results
are shown in Table 2. For these comparison, P¼8 is employed
without and with bin reduction. In this study, using the ANN, ROI
size of 200�200 pixels, R¼3, and P¼8 with the bin reduction to
4 directions provided the best result in terms of AUC. With these
parameters, the number of patterns was 31, and the use of first 20
PCs provided the highest AUC. By using the SVM, ROI size of
250�250 pixels, R¼5, and P¼8 with the bin reduction to
4 directions provided the best AUC, whereas the AUC for ROI size
of 300�300 pixels, R¼7, and P¼8 without the bin reduction was
the best using the RF. For these results, the numbers of PCs
employed were 19 and 16 for the SVM and RF, respectively. The
results indicate that a small difference in ROI size does not
strongly affect the result when an appropriate R is used for the ROI
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size. The classification performance was degraded when the ROI
size was too small and/or R was not suitable for the ROI size.
Table 3 presents the results for different P parameter. Although
AUCs were lower for P¼4 than for P¼8, the results for P¼8 with
bin reduction were comparable with those without bin reduction.
These results indicate that the bin reduction is effective in redu-
cing the number of features without degrading the classification
performance. Using ANN and SVM, comparable results were
obtained with P¼16; however, the calculation time was more than
100 times longer than that for P¼8.

In this study, we proposed RLTP to take into account the
orientation of edge patterns with respect to the mass center.
Table 4 shows the comparison of the results using LTP, uniform LTP
(U2-LTP), RI-LTP, RIU2-LTP, RLBP, and RLTP. For each classifier and
LBP/LTP variant, the ROI size and other parameters were optimized
and the best result was presented in the table. The ROC curves for
these LTPs and LBP using the ANN, SVM, and RF are shown in
Fig. 4. Table 5 presents the p values for statistical comparison of
these results. With all three classifiers, the AUCs for RLTP are
statistically significantly higher than those for other LTPs (po0.01
for all by ROCKIT v1.1, The University of Chicago [40]) and RLBP,
except for the case using ANN (p¼0.06). The results indicate the
potential utility of the proposed RLTP for distinguishing between
benign and malignant masses. Fig. 5 shows examples of RLTP
images of benign and malignant masses representing the RLTP
pattern of each pixel. Darker pixels correspond to the edges in
radial direction, while lighter pixels correspond to the edges in
direction perpendicular to the radial direction, some of which
correspond to spicula. These images show the difference in edge
patterns around the mass margin between benign and malignant
masses. The corresponding RLTP histograms are also included. The
histogram bins 2 to 8, 9 to 15, 16 to 22, and 23 to 29 correspond to
inward edges, outward edges, clockwise edges, and counter
Table 3
The effect of P parameter.

ROI size R P Bin reduction Number of bins AUC
ANN SVM RF

200�200 3 4 No 15 0.853 0.845 0.807
200�200 3 8 Yes 31 0.900 0.881 0.842
200�200 3 16 Yes 63 0.881 0.859 0.822
200�200 3 16 No 243 0.863 0.852 0.798
250�250 5 4 No 15 0.859 0.862 0.822
250�250 5 8 Yes 31 0.897 0.895 0.864
250�250 5 16 Yes 63 0.887 0.878 0.852
250�250 5 16 No 243 0.883 0.871 0.853
300�300 7 4 No 15 0.861 0.861 0.832
300�300 7 8 Yes 31 0.894 0.892 0.870
300�300 7 16 Yes 63 0.900 0.895 0.872
300�300 7 16 No 243 0.897 0.874 0.868

Table 4
The result for different LBP/LTP patterns.

Pattern Number of patterns AUC
ANN SVM RF

LTP 256 0.773 0.765 0.712
U2-LTP 59 0.766 0.783 0.759
RI-LTP 36 0.768 0.763 0.727
RIU2-LTP 10 0.780 0.778 0.757
RLBP 31/59 0.875 0.856 0.833
RLTP 31/59 0.900 0.895 0.881

nRLBP: radial LBP, U2-LTP: uniform LTP, RI-LTP: rotation invariant LTP, RIU2-LTP:
rotation invariant uniform LTP, and RLTP: radial LTP
clockwise edges, respectively. In benign masses, frequencies of
radial edges are larger, whereas in malignant images frequencies
of non-radial edges are larger.

By including the variance features, the results were almost
unaffected in terms of AUC. Fig. 6 shows the variance images of the
same ROIs in Fig. 5. For these examples, the variances were
quantized to 10 bins. These images show that the variances are
larger in malignant ROIs. The AUC by the variance alone using the
ANN was 0.742. The results suggest that the variance histogram
may be useful in distinguishing between benign and malignant
ROIs. However, when combined with the RLTP histogram, the
contribution of the variance was minimal in this study.

4.2. Comparison with other features

For the computation of GLCM, the number of gray levels was
reduced to 5, 6, 7 or 8 bits, and the distance parameter, d, of 1, 2, 3,
and 4 was tested. The AUC results are shown in Fig. 7 and the best
AUCs are summarized in Table 6. As shown in the figure and table,
different classifiers provided the best AUCs for different combi-
nation of ROI size and d parameter; however, the difference in
AUCs was small among tested parameters except for the bit
reduction to 5 bits. For LTP-based features, higher AUCs were
obtained with the RLTP and RLBP than with the regular LTP and RI-
LTP. Similarly, AUCs were higher for the features determined in the
polar transformed images than in the original images (Table 6).
These results support the importance of the texture pattern
orientation for distinguishing between benign and malignant
masses. Classification performance was higher for the RLTP-based
features compared with that of the GLCM-based features.

Table 7 shows the classification performances using the
wavelet coefficients for different subbands and composition levels.
The highest AUC was obtained using the highest 100 coefficients
from each subband of 3-level decomposition with ROIs of
128�128 pixels by ANN, although comparable AUCs were
obtained by SVM and RF. By selecting the highest coefficients, the
most characteristic parts (edges) are reflected in the feature dis-
regarding the location. The process is somewhat similar to shifting
the binary code. The result would be the same when the image is
rotated. Therefore, this process can be considered as achieving
rotation invariance. However, it does not take into account the
edge orientation with respect to the mass center as with RLTP and
GLCM in polar transformed images. It might be a possible reason
for the lower AUCs compared with those of RLTP and GLCM-based
features.
5. Discussion

We investigated the ROI-based features that do not require
precise segmentation of lesions for classification between benign
and malignant masses on mammograms. The proposed RLTP-
based features obtained a high classification performance of 0.90
in AUC. The classification result may be useful for assisting radi-
ologists’ diagnoses of breast lesions with a minimal input of pla-
cing a square ROI. The system can provide consistent results for
lesions overlapped with fibrograndular tissue where automated
segmentation is challenging. The ROI-based features may supple-
ment the conventional shape based features.

In pattern classification problems, it would be desirable that an
image is classified to the same group when it is rotated. For
facilitating such classification, rotation invariant features were
proposed [28]. However, in distinguishing between benign and
malignant masses, edge orientation with respect to the direction
toward the mass center is important to characterize circumscribed
and spiculated margins. In this study, we proposed RLTP that not



Fig. 4. ROC curves of classification results for different types of LBPs. The results by (a) ANN, (b) SVM, and (c) RF.

Table 5
P-values for difference in AUCs for different LBP/LTP patterns.

U2-LTP RI-LTP RIU2-LTP RLBP RLTP

LTP 0.44 0.55 0.95 0.0001 o0.0001
0.23 0.84 0.34 0.0009 o0.0001
0.03 0.69 0.05 o0.0001 o0.0001

U2-LTP 0.94 0.53 o0.0001 o0.0001
0.34 0.89 0.004 o0.0001
0.09 0.99 0.004 o0.0001

RI-LTP 0.47 o0.0001 o0.0001
0.13 0.0006 o0.0001
0.06 0.0001 o0.0001

RIU2-LTP 0.0001 o0.0001
0.008 o0.0001
0.007 o0.0001

RLBP 0.06
0.003
0.004

*First, second, and third rows in each cell correspond to the p-values for compar-
isons using ANN, SVM, and RF
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only takes into account the pattern orientation with respect to the
center of masses but also is robust to the image rotation. The best
AUCs obtained for RLTP using ANN, SVM and RF were 0.900, 0.895,
and 0.881, respectively, whereas the best AUCs obtained for RIU2-
LTP were 0.780, 0.778, and 0.757, respectively. The results showed
a higher classification performance for RLTP over the RIU2-LTP
(po0.0001). There were no statistical significant differences
between AUCs for RLTP obtained using different classifiers
(p¼0.68 for ANN vs SVM, p¼0.06 for ANN vs RF, and p¼0.13 for
SVM vs RF).

In this study, classification performance for RLTP-based features
(AUC¼0.90) was superior to those for GLCM-based features
(AUC¼0.86; p¼0.01) and DWT-based features (AUC¼0.83;
p¼0.0001). In the literature, there have been several studies
indicating the utility of DWT and other multiresolutional trans-
forms for classification of mammograms [25–27,29,30]. Some of
them showed very high classification performance. The results of
these studies cannot be directly compared with those in this study
because of the different datasets used. With DWT, there seems to



Fig. 5. RLTP images for benign (top two rows) and malignant (bottom two rows) masses and the corresponding RLTP histograms.
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be no concrete consensus as to which wavelet function is used,
which subbands are used and how it is used, e.g., as preprocessing
or features. In this study, we applied one of the popular functions,
Daubechies-4, and tested the use of the coefficients directly as
features for mass classification. Because of the large number of
features, the highest coefficients were selected before applying
PCA; it may have a similar effect as obtaining the rotation invariant
DWT features. The AUC was slightly higher than RI-LTP and GLCM
in Cartesian coordinate images but slightly lower than RLTP and
GLCM in polar transformed images. The results may be improved
by use of other classifiers; however, exploration of the suitable
classifier is beyond the scope of this study. There may be other
effective ways of using DWT, such as the preprocessing approach
as in [29]. A combination of DWT and RLTP and GLCM-based fea-
tures should be investigated in the future.

Although we performed the test using a leave-one-case-out
cross validation, the training and test datasets are not completely
independent. The best parameters and the number of PCs were
determined based on the cross validation results. The effectiveness
of the proposed method and the optimal parameters must be
validated with the independent dataset.



Fig. 6. Variance images for the ROIs in Fig. 5.

Fig. 7. AUC results for GLCM with different parameters using (a) ANN, (b) SVM, and (c) RF.
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Table 6
The best AUC for each ROI size and classifier for GLCM-based features.

ROI size Polar coordinate Cartesian coordinate

ANN SVM RF ANN SVM RF

150�150 0.853 0.839 0.834 0.773 0.753 0.764
200�200 0.858 0.852 0.845 0.769 0.752 0.757
250�250 0.852 0.856 0.849 0.772 0.754 0.764
300�300 0.852 0.844 0.848 0.774 0.760 0.773

Table 7
Classification results for DWT-based features.

ROI size Number of decomposition Subbands Number of coefficients AUC
ANN SVM RF

64�64 1 LL, HH 2048 0.785 0.819 0.762
64�64 2 LL, HH 1536 0.751 0.771 0.782

128�128 1 LL, HH 8192 0.795 0.806 0.773
128�128 2 LL, HH 6144 0.763 0.786 0.775
128�128 3 LL, HH 5632 0.679 0.760 0.734
64�64 1 100 highests from all 400 0.775 0.766 0.756
64�64 2 100 highests from all 700 0.822 0.789 0.770

128�128 1 100 highests from all 400 0.797 0.752 0.760
128�128 2 100 highests from all 700 0.768 0.750 0.737
128�128 3 100 highests from all 1000 0.827 0.822 0.810
256�256 1 100 highests from all 400 0.773 0.743 0.769
256�256 2 100 highests from all 700 0.766 0.750 0.762
256�256 3 100 highests from all 1000 0.750 0.742 0.739
256�256 4 100 highests from all 1300 0.825 0.814 0.813
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6. Conclusion

ROI-based image features without the need of precise seg-
mentation of lesions may be useful as a part of CAD system for
diagnosis of mammograms. The experimental results showed the
high classification ability of the proposed RLTP for ROIs with
benign and malignant masses. RLTP classification could provide
supplemental information to the conventional contour-based
features. The utility of the proposed features should be further
evaluated with a large independent database.
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Summary

Texture features are useful for pattern recognition and classi-
fication. Unlike conventional features for classification of lesions,
such as shape and contrast features, determination of texture
features does not require the precise segmentation of the lesions.
Therefore, such region of interest (ROI)-based features can be
advantageous where manual segmentation is time-consuming and
accurate automatic segmentation could be difficult by the back-
ground. In general, an image is expected to be classified to the
same category when it is rotated. Therefore, rotation invariant
texture features have been proposed. However, in the classification
of lesions on medical images, edge orientation may be an impor-
tant feature to distinguish between the lesions with well-defined
and circumscribed margin and those with spiculated margin.
In this study, we investigated the ROI-based features and propose
a new variant of local binary patterns (LBP), which takes into
account the pattern orientation with respect to the center of
lesions and still is robust to image rotation. The usefulness of the
proposed features was tested for classification of benign and
malignant masses on mammograms and compared with other
texture features. Our database consists of the square ROIs includ-
ing 181 malignant and 195 benign masses. The proposed radial
local ternary pattern (RLTP), conventional LTP, rotation invariant
(RI) LTP, Haralick's texture features using gray level co-occurrence
matrix (GLCM), and wavelet features were determined from the
ROIs. After applying the principal component analysis to reduce
the number of features, ROIs were classified by use of an artificial
neural network, a support vector machine, or random forest
classifier. Based on the receiver operating characteristic (ROC)
analysis, the areas under the ROC curves for the RLTP, LTP, RIU2-
LTP, GLCM, and wavelet features were 0.90, 077, 0.78, 0.86, and
0.83, respectively. The results indicated the superiority of the
proposed feature over the conventional rotation invariant features
and the potential utility of the feature for classification of breast
lesions on mammograms.
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