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Abstract— Retinal arteriolar narrowing is decided based on 

the artery and vein diameter ratio (AVR). Previous methods 

segmented blood vessels and classified arteries and veins by 

color pixels in the centerlines of blood vessels. AVR was 

definitively determined through measurement of artery and 

vein diameters. However, this approach was not sufficient for 

cases with close contact between the artery of interest and an 

imposing vein. Here, an algorithm for AVR measurement via 

new classification of arteries and veins is proposed. In this 

algorithm, additional steps for an accurate segmentation of 

arteries and veins, which were not identified using the previous 

method, have been added to better identify major veins in the 

red channel of a color image. To identify major arteries, a 

decision tree with three features was used. As a result, all major 

veins and 90.9% of major arteries were correctly identified, and 

the absolute mean error in AVRs was 0.12. The proposed 

method will require further testing with a greater number of 

images of arteriolar narrowing before clinical application. 

I. INTRODUCTION 

Funduscopy is an effective noninvasive method to 
diagnose diabetic retinopathy and glaucoma through direct 
observation of the blood vessels in the retina. Other than eye 
diseases, funduscopy can also be used to diagnose systemic 
hypertension by estimating cerebrovascular status, owing to 
the close proximity of the retina to the brain. Moreover, 
funduscopic examination of the retina can be useful in other 
medical fields, including ophthalmology, neurosurgery, and 
cardiology. 

Retinal images are interpreted based on Keith–Wagner 
classification or Scheie classification of hypertensive 
retinopathy. The Scheie classification system grades 
retinopathy into two categories: hypertensive changes and 
arteriosclerotic changes, in which signs of low-grade diseases 
are related to blood vessels and grades 1 and 2 are determined 
based on the degree of arteriolar narrowing and scored 
according to the retinal artery and vein diameter ratio (AVR). 
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Decreasing AVR is associated with an increased risk of stroke 
and myocardial infarction. 

Studies of the association of retinopathy and blood vessel 
segmentation have arrived at the following consensus of four 
categories of blood vessel segmentation algorithms [1–4]: (i) 
matched filtering [1], (ii) a multi-scale method [2, 3], (iii) a 
supervised method [3], and (iv) morphological processing [4]. 
Chaudhuri et al. proposed a method using twelve different 
templates that were used to search for vessel segments along 
all possible directions [1]. Rangayyan et al. used multi-scale 
Gabor filter, coherence, and the green channel of pixel value 
as features, and it classified pixels using multilayer perceptron 
[2]. Niemeijer et al. developed a system to grade blood vessels 
using the k-nearest neighbor classifier with a multi-scale 
Gaussian-matched filter and its first and second order 
derivatives [3]. We also proposed a method employing a 
combination of a double-ring filter and black top-hat (BTH) 
transformation [4]. Double-ring filter is composed of the inner 
and outer ring regions, resulting in fast outputs with the 
contrast based on differences between the mean values of 
these regions. 

We have reported for grading of hypertensive changes 
based on measurements of the diameters of arteries and veins 
[4, 5]. In this system, the arteries and veins are classified 
according to linear discriminant analysis (LDA) of eight 
pixel-based-features in the centerline of the candidate blood 
vessel [4]. Niemeijer et al. also proposed an AVR 
measurement method by classifying the arteries and veins 
based on color pixels in the centerlines of blood vessels [6]. 
Vázquez et al. [7] proposed a classification method based on a 
minimal path approach, where the vessels are segmented, 
measured, and classified according to several circumferences 
concentric to the optic disc. These vessel segments are then 
tracked and final results are obtained via a voting technique. 
However, these methods were not thought about segmentation 
of artery neighboring a vein as shown in Fig. 1. Therefore, the 
purpose of this study was to reconstruct the AVR 
measurement algorithm by improving classification of 
candidate arteries and veins. 

II. METHODS 

A. Previous AVR measurements 

The AVR measurement zone was designated as between 
the quarter-disc and one-disc diameters from the optic disc 
margin, in accordance with the methods of a previous 
Japanese study (Fig. 2) [4]. AVR is generally determined 
using the six largest arteries and veins on retinal images 
centered at the optic disc [8]. However, the retinal images for 
screening exams are obtained with the center of macula for 

Artery and Vein Diameter Ratio Measurement Based on 

Improvement of Arteries and Veins Segmentation on Retinal Images 

Yuji Hatanaka, Member, IEEE, Hirokazu Tachiki, Kazunori Ogohara, Chisako Muramatsu,  

Susumu Okumura, and Hiroshi Fujita, Member, IEEE 

978-1-4577-0220-4/16/$31.00 ©2016 IEEE 1336



  

Vein

Artery

     
(a)                                   (b)                                 (c) 

   
                      (d)                                      (e) 

Figure 4 Vessel correction by template-matching. (a) An example of 

initial blood vessels segmentation. (b) Blood vessel model for reflected 
one. (c) Blood vessel model for non-reflected one. (d) Result of 

template-matched image. (e) Result of blood vessel correction.  

screening various diseases. Therefore, it may be more reliable 
to the temporal vessels for the AVR measurement in such 
images. In our previous method, indicated by thin lines in Fig. 
3, optic disc location and approximate diameters were 
determined using an active contour method for determination 
of the AVR measurement zone [9]. The blood vessel regions 
were segmented by combining a double-ring filter and BTH 
transformation in the green channel of color retinal images [4]. 
However, the contrast of some of the blood vessel segments 
was low; therefore, in some instances, the vessels were 
separated, as shown in Fig. 4 (a). The resulting gap was 
interpolated by template-matching using a blood vessel model 
[5]. Using reflected and non-reflected blood vessels as 
references, two blood vessel models were created, as shown in 
Fig. 4 (b) and (c). Pixel distribution of the blood vessel region 
of the model was Gaussian. By setting three diameters (9, 13, 
and 17 pixels) and 3 pixel densities (5, 9, and 13 in 8 bit), total 
18 types of models were used. Representative 
template-matched and corrected images are shown in Fig. 4 
(d) and (e), respectively. Crossing-points and bifurcations of 
the blood vessels were well depicted by the number of pixels 
(NoP) on the centerlines. Where, NoP = 3 was defined as a 
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Figure 3 Flowchart of AVR measurement. Thin line boxes show processes by previous method. Bold line boxes show processes added by our proposed 

method. 
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Figure 2. Determination of an AVR measurement zone. D, optic disc 

diameter. 
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Figure 1. A representative image of an artery and a vein in close contact. (b) 

Enlarged image of the blood vessel marked by a rectangle in (a). 
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(a)                                                (b) 

Figure 6. Result of major artery and vein segmentation by our previous 

method and added processes. Blue and red indicate identified areas of 

veins and arteries, respectively. (a) Results of our previous method. (b) 

Results of our proposed method.  
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Figure 5. Result of major artery and vein identification with these added processes. (a) Green component image. (b) Red component image. Contrasts of 

arteries were lower than (a). (c) Vein candidates extracted in (b). (d) Vein candidates identified. (e) Final major vein identified. (f) Blood vessels extracted 

in (a). (g) Artery candidates identified by removing vein. (h) Final major arteries and man veins identified. 

bifurcation and NoP = 4 was defined as a crossing-point. The 
candidate veins were divided into branch segments at 
crossing-points and bifurcations. Centerlines of candidate 
blood vessels were then detected using the Hilditch thinning 
algorithm. The pixels on the centerline were classified as an 
artery or a vein using LDA. Eight features of artery-vein 
properties were used for classification: the three original color 
components (red, green, and blue), three contrasts in the color 
channels, and outputs of the double-ring filter and BTH 
transformation. In this study, a temporal arteries and veins 
were identified, because the optic disc and the macula 
appeared symmetrical in the images. The small blood vessel 
segments were then removed and those within the limits of 
experimentally determined direction were identified as 
candidates of arteries and veins. If length of branch was under 
a half of the optic disc diameter, the branch was found by 
using new process. The vessel diameters were determined by 
the length of the shortest path through the centerline pixels 
inside the vessel region. Artery width WAi and vein one WVj 
were defined as means of these widths. AVR was finally 
calculated by using equation (1). 
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where “n” and “m” present the number of artery and vein 
branches, respectively. “n” and “m” were maximum 2 in this 
study [10]. 

B. Novel process for candidate artery and vein 

identification 

In a preliminary test, our previous method failed to 
correctly identify approximately 25% of arteries. Thus, we 
added processes for the identification of such arteries, as 
illustrated by the bold lines in Fig. 3. It is well known that 
absorbance of oxygenated hemoglobin is significantly lower 
than that of reduced hemoglobin in the red light band (600-750 
nm). In the red component of the color image shown in Fig. 5 

(a) and (b), contrast of the arteries is very low because of the 
abundance of oxygenated hemoglobin in arterial blood. 

1) Major vein identification 
Candidate veins were segmented using our previous 

method in the red component of a color retinal image. 
However, the red component contained considerable noise in 
parts of artery, as depicted in Fig. 5 (c). Thus, small candidates 
were removed to ameliorate the noise. The veins were 
identified using LDA with the eight features proposed in our 
previous method [4]. A representative image of the identified 
vein is shown in Fig. 5 (d). To identify major veins for AVR 
measurement, vein candidates were divided into branch 
segments at crossing-points and bifurcations. In general, if 
several candidate veins run parallel, the widest should be 
chosen as the major vein, as shown in Fig. 5 (e). 

2) Major artery identification 
A representative image of candidate blood vessels detected 

in the green channel of color images is shown in Fig. 5 (f). By 
excluding the vein described above as a vessel candidate, the 
artery candidates were obtained, as shown in Fig. 5 (g). Major 
arteries were identified according to a decision tree [11] with 
three features. Differences in the mean diameter and area of 
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the artery of interest and the next candidate were defined as 
two features. A third feature was the angle using three points: 
the centers of the artery of interest, the optic disc, and the 
closest major vein. Fig. 5 (h) shows the final identification of 
the major arteries and major veins for AVR measurement. For 
the case presented in Fig. 1, although the previous method was 
insufficient to identify a major artery and a major vein, the 
added processes described in the flowchart facilitated 
successful segmentation, as shown in Fig. 6. 

III. RESULTS 

The 22 retinal images used in this study were obtained in a 
university hospital using a Nonmyd 7 digital retinal camera 
(Kowa Medical, Aichi, Japan). These were images used in our 
previous study [5]. The images were saved in JPEG format at a 
resolution of 3008 × 2000 pixels. The created database 
includes each of the 44 major arteries and major veins. The 
focus of this study was to identify major arteries and veins for 
AVR measurement. The blood vessels were selected from 
manual segmentation results and definitively classified as 
either arteries or veins by an ophthalmologist. On the basis of 
these definitively classified images, the vessel diameters in the 
measurement zones were automatically calculated. For this 
purpose, the optic disc centers and diameters were manually 
identified. 

Based on our previous method [5], 93.2% (41/44) of the 
major veins and 75.0% (33/44) of the major arteries were 
identified. In addition, all of three major veins and 7 of the 
remaining 11 major arteries were correctly identified using the 
process described in section II B. In the preliminary test, we 
compared decision tree and random forest for selection of 
major arteries. We applied decision tree which is simpler than 
random forest because these show the same ability.  

The absolute mean error and standard deviation of AVR 
based on our proposed method were 0.12 and 0.077, whereas 
they were 0.094 and 0.070 based on our proposed method. Our 
previous method could not calculate AVR in two images, but 
our proposed method calculated AVR in all images. Our 
proposed method could identify seven arteries and 3 veins, 
which were not identified by our previous method. However, 
the accuracy of such blood vessels segmentation was low. 
Therefore, we continue with the development of a new blood 
vessel segmentation system based on high-order local 
autocorrelation, which performed better in blood vessel 
segmentation than the method proposed in this study [12]. 
Moreover, we proposed a vein diameter measurement based 
on correction of the vessel centerline and walls in 
arteriovenous crossing to improve the performance of blood 
vessel diameter measurement [13]. The method is able to 
measure the vein diameters with 1.39 pixels mean error. 
Applying these methods would make better the performance 
of AVR measurement. 

IV. CONCLUSION 

This paper described an improvement to AVR 
measurement via separate identification of major arteries and 
major veins. All major veins and 90.9% of major arteries were 
correctly identified. As a result, the absolute mean error in the 
AVRs was 0.12. The proposed method will require further 

testing with a greater number of images of arteriolar 
narrowing before clinical application. 
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