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1. INTRODUCTION

Fully automatic image segmentation is a fundamental step
of computer-based image analysis in 3D CT scans by mapping
the physical image signal to a useful abstraction [1]. Unfortu-
nately, the current research on the image segmentation of CT
images is still limited to the major organs（e.g., lungs, liver）,
and shows unsatisfactory computational efficiency, accuracy,
and robustness, especially for abnormal CT cases. Therefore,
the image-segmentation issue has become a bottleneck for
further computer-based medical image analysis and image
interpretation.

Conventional approaches to CT image segmentation
usually try to transfer human knowledge directly to a
processing pipeline, including numerous hand-crafted signal
processing algorithms and image features. Although many
mathematical models have recently been introduced in image
segmentation [2-9], they still attempt to emulate limited human
rules or operations in segmenting CT images. In order to
further improve the accuracy and robustness of image
segmentation, we need to be able to handle a large variety of
ambiguous image appearances, shapes, and relationships of
anatomical structures. It is difficult to achieve this goal by
defining and considering human knowledge and rules explicitly.
Instead, a data-drive approach using big image data—such as a
deep convolutional neural network（CNN）—is expected to be
better for solving this segmentation problem.

Recently, several studies were reported that applied deep
CNNs to medical image analysis. Many of these used deep
CNNs for lesion detection or classification [10-12]. A few of
these embedded patch-based deep CNNs into conventional

organ-segmentation processes to reduce the false positives
（FPs）in the segmentation results or to predict the likelihoods
of the image patches [13-15]. However, the anatomical
segmentation of CT images over a wide region of the human
body is still challenging because of the image appearance
similarities between different structures, as well as the
difficulty of ensuring global spatial consistency in the labeling
of patches in different CT cases.

This paper proposes a novel segmentation approach based
on deep CNNs that naturally imitate the thought processes of
radiologists during CT image interpretation for image segmen-
tation. Our approach models CT image segmentation in a way
that can best be described as “multiple 2D proposals with a 3D
integration.” This is very similar to the way that a radiologist
interprets a CT scan as many 2D sections, and then
reconstructs the 3D anatomical structure as a mental image.
Unlike previous work on medical image segmentation that
labels each voxel/pixel by a classification based on its
neighborhood information（i.e., either an image patch or a
“super-pixel”）, our work uses rich information from the entire
2D section to directly predict complex structures（multiple
labels on images）. Furthermore, the proposed approach is
based on a fully convolutional network（FCN）[16] without
using any conventional image-processing algorithms such as
smoothing, filtering, and level-set methods. In addition, the
proposed approach uses one simple network to segment
multiple organs simultaneously. It is adaptive to 3D or 2D
images over an arbitrary CT scan range（e.g., body, chest,
abdomen）, and CT segmentation with this capability has not
previously been reported.
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2. METHODS

2.1 Overview
As shown in Fig.1, the input is a 3D CT case（the

method can also handle a 2D case, which can be treated as a
degenerate 3D case）, and the output is a label map of the
same size and dimension, in which the labels are a pre-defined
set of anatomical structures. Our segmentation process is
repeated to sample 2D sections from the CT case, pass them to
FCN for 2D image segmentation, and stack the 2D labeled
results back into 3D. Finally, the anatomical structure label at
each voxel is decided based on majority voting at the voxel.
The core part of our segmentation is an FCN that is used for
the anatomical segmentation of the 2D sections. This FCN is
trained based on a set of CT cases, with the human annotations
as the ground truth. All of the processing steps of our CT
image segmentation are integrated into an all-in-one network
under a simple architecture with a global optimization.

2.2 3D-to-2D image decomposition and 2D-to-3D label
stacking
In the proposed approach, we decompose a CT case（a

3D matrix, in general）into numerous sections（2D matrices）
with different orientations, segment each 2D section, and
finally, assemble the outputs of the segmentation（labeled 2D
maps）back into 3D. Specifically, each voxel in a CT case（a
3D matrix）can lie on different 2D sections that pass through
the voxel with different orientations. Our idea is to use the rich
image information of the entire 2D section to predict the
anatomical label of this voxel, and to increase the robustness
and accuracy by redundantly labeling this voxel on multiple
2D sections with different orientations. In this work, we select
all the 2D sections in three orthogonal directions（axial,
sagittal, and coronal-body）; this ensures that each voxel in a
3D case is located on three 2D CT sections.

After the 2D image segmentation, each voxel is redundantly
annotated three times from these three 2D CT sections. The
annotated results for each voxel should ideally be identical, but

may be different in practice because of mislabeling during the
2D image segmentation. A label fusion by majority voting
（selecting mode from three labels）is then introduced to
improve the stability and accuracy of the final decision.
Furthermore, a prior for each organ type（label）is estimated
by calculating voxel appearance frequency of the organ region
within total image based on training samples. In the case of no
consensus between three labels during the majority voting
process, our method simply selects the label with the biggest
prior as the output.

2.3 FCN-based 2D image segmentation via convolution
and de-convolution networks
We use an FCN for semantic segmentation in each 2D

CT slice by labeling each pixel. Convolutional networks are
constructed using a series of connected basic components
（convolution, pooling, and activation functions）with translation
invariance that depends only on the relative spatial coordinates.
Each component acts as a nonlinear filter that operates（e.g.,
by matrix multiplication for convolution or maximum pooling）
on the local input image, and the whole network computes a
general nonlinear transformation from the input image. These
features of the convolutional network provide the capability to
adapt naturally to an input image of any size and any scan
range of the human body, producing an output with the
corresponding spatial dimensions.

Our convolutional network is based on the VGG16 net
structure（16 layers of 3×3 convolution interleaved with
maximum pooling plus 3 fully connected layers）[17], but with
a change in the VGG16 architecture by replacing its fully
connected layers（FC 6 and 7 in Fig.2）with convolutional
layers（Conv 6 and 7 in Fig.2）. Its final fully connected
classifier layer（FC 8 in Fig.2）is then changed to a 1×1
convolution layer（Conv 8 in Fig.2）whose channel dimension
is fixed at the number of labels（the total number of
segmentation targets was 20 in this work, including the
background）. This network is further expanded by docking a
de-convolution network（the right-hand side in Fig.2）. Here,

Fig.1 Pipeline of proposed anatomical structure segmentation for 3D CT scan. See Fig.2 for the
details of the FCN part.
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we use the structures of the de-convolution [16], which are
constructed using three de-convolution layers, each of which
consists of up-sampling, convolution, and crop layers. As in
the original idea [16], the intermediate results of the convolution
network（the lower layers—Pools 3 and 4 —of VGG16 with
higher image resolution）are skipped and combined sequentially
into de-convolution layers. This skip structure passes the
information that is lost in the lower convolution layers of
VGG16 directly into the de-convolution process, which recovers
the detailed contour sequentially under a higher image
resolution.
FCN training . The proposed network is trained with

numerous CT cases of humanly annotated anatomical structures.
All of the 2D CT sections（corresponding to the label maps）
along the three body orientations are shuffled, and used to
train the FCN. The training process repeats feed-forward
computation and back-propagation to minimize the loss
function, which is defined as the sum of the pixel-wise losses
between the network prediction and the label map annotated
by the human experts. The gradients of the loss are propagated
from the end to the start of the network, and the method of
stochastic gradient descent with momentum is used to refine
the parameters of each layer.

The FCN is trained sequentially by adding de-convolution
layers. To begin with, a coarse prediction（by a 32-pixel
stride）is trained for the modified VGG16 network with one de-
convolution layer（called FCN32s）. A finer training is then
added after adding one further de-convolution layer at the end
of the network. This is done by using skips that combine the
final prediction layer with a lower layer with a finer stride in

the modified VGG16 network. This fine-training is repeated
with the growth of the network layers to build FCN16s and
FCN8s, which are trained from the predictions of 16 and 8
strides on the CT images, respectively.
2D CT segmentation using trained FCN . The density

resolution of the CT images is reduced from 12 to 8 bits using
linear interpolation. The trained FCN is then applied to each
2D section independently, and each pixel is labeled automatically.
The labels from each 2D section are then projected back to
their original 3D locations for the final vote-based labeling, as
described above.

3. EXPERIMENT AND RESULTS

Our experiment used a CT image database that was pro-
duced and shared by a research project entitled “Computational
Anatomy [18]”. This database included 640 3D volumetric CT
scans from 200 patients at Tokushima University Hospital. The
spatial resolution of these CT images was distributed from
0.625 to 1.148 mm on transverse plane with slice thickness of
1 mm. However, any normalization of the spatial resolution to
an isotropic value was not done in both training and test stages.
The anatomical ground truth（a maximum of 19 labels that
include Heart, right/left Lung, Aorta, Esophagus, Liver,
Gallbladder, Stomach and Duodenum（lumen and contents）,
Spleen, left/right Kidney, Inferior Vein Cava, region of Portal
Vein, Splenic Vein, and Superior Mesenteric Vein, Pancrease,
Uterus, Prostate, and Bladder in 240 CT scans was also
distributed with the database [19]. Our experimental study used
all of the 240 ground-truth CT scans, comprising 89 torso, 17

Fig.2 Semantic image segmentation of 2D CT slice using fully convolutional network（FCN）[16]. Conv : convolution, Deconv :
deconvolution, and FC : fully connected.
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chest, 114 abdomen, and 20 abdomen-with-pelvis scans.
Furthermore, our research work was conducted with the
approval of the Institutional Review Boards at Gifu and
Tokushima Universities.

We picked 10 CT scans at random as the test samples,
using the remaining 230 CT scans for training. As previously
mentioned, we took 2D sections along the axial, sagittal, and
coronal body directions. For the training samples, we obtained
a dataset of 84,823 2D images with different sizes（width :
512 pixels ; height : 80-1141 pixels）. We trained a single
FCN based on the ground-truth labels of the 19 target regions.
Stochastic gradient descent（SGD）with momentum was used
for the optimization. A learning rate of 10－4, momentum of
0.9, and weight decay of 2－4 were used as the training
parameters. All the 2D images were used directly as the inputs
for FCN training, without any patch sampling. We did not
balance the target classes by weighting the training loss,
although the sample numbers and occupied regions of each

target class were significantly different.
We tested the proposed FCN network（Fig.1）using 10

CT cases that were not used in the FCN training. An example
of the segmentation result for a 3D CT case covering the
human torso is shown in Fig.3. The accuracy of the
segmentation was evaluated per organ type and per image.
First, we measured the intersection over union（IU）（also
known as the Jaccard similarity coefficient）between the
segmentation result and the ground truth. The mean IU values
in each organ type are listed in Table 1 for both training and
test data.

Because each CT case may contain different anatomical
structures—with the information about these unknown before
the segmentation—we performed a comprehensive evaluation
of multiple segmentation results for all the images in the test
dataset by considering the variance of the organ number and
volume. Four measures（voxel accuracy, mean voxel accuracy,
IU, and frequency weighted IU）that are commonly used in

Fig.3 An example of segmentation in a 3D CT case. Left : corresponding ground truth, Right : segmented regions
labeled with different colors for one 2D CT slice and 3D visualization based on surface-rendering method.

Target name
Mean value of IUs

Training samples（230） Test samples（10）

Right Lung
Left Lung

Heart
Aorta

Esophagus
Liver

Gallbladder
Stomach and Duodenum（2nd pos.）

Stomach and Duodenum Lumen
Contents inside of Stomach and Duodenum

Spleen
Right Kidney
Left Kidney

Inferior Vena Cava
Portal Vein, Splenic Vein, and Superior Mesenteric Vein

Pancreas
Uterus

Prostate
Bladder

0.92
0.91
0.87
0.72
0.18
0.91
0.58
0.48
0.59
0.21
0.85
0.85
0.85
0.56
0.32
0.48
0.23
0.48
0.67

0.87
0.88
0.87
0.63
0.27
0.91
0.48
0.43
0.61
0.10
0.86
0.86
0.84
0.51
0.03
0.45
0.09
0.35
0.72

Table 1 Accuracy evaluations in terms of mean value of IUs per target type between segmentation and ground truth in 230 training
and 10 test CT scans after voting in 3D.
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semantic segmentation and scene parsing were employed for
the evaluations [16]. The evaluation results for the voxel
accuracy, mean voxel accuracy, IU, and frequency weighted
IU were 89%, 66%, 59%, and 84%, respectively, when
averaged over all the segmentation results of the test dataset.
These results show that 89% of the voxels within the
anatomical structures（constructed using multiple target regions）
were labeled correctly, with an coincidence（which is the same
as the Jaccard similarity coefficient）of 59% for the test
dataset. After normalizing the voxel accuracy and IU using the
target numbers and volumes for different CT cases, these two
values changed to 66 % and 84%, respectively.

4. DISCUSSION

We found that the target organs were recognized and
extracted correctly in all the test CT images, except for
oversights of the portal vein, splenic vein, and superior
mesenteric vein in two CT cases. Because our segmentation
targets covered a wide range of shapes, volumes, and sizes,
either with or without contrast enhancement, and at different
locations in the human body, these experimental results
demonstrated the potential capability of our approach to
recognize whole anatomical structures appearing in CT images.
The IUs of the organs with larger volumes（e.g., liver : 91%,
heart : 87%）were comparable to the accuracies reported from
the previous state-of-the-art methods [2-9]. For some smaller
organs（e.g., gallbladder）or line structures（e.g., portal vein,
splenic vein, and superior mesenteric vein）that have not been
reported in previous work, our segmentation did not show
particularly high IUs, but this performance was deemed
reasonable because the IU tends to be lower for those organs
with smaller volumes. The physical CT image resolution is the
major cause of this limited performance, rather than the
segmentation method. Our evaluation showed that the average
segmentation accuracy of all the targets over all the test CT
images was approximately 84% in terms of the frequency
weighted IUs. From this, we see that our approach can
recognize and extract all types of major organs simultaneously,
achieving a reasonable accuracy according to the organ volume
in the CT images.

5. CONCLUSION

We proposed a novel approach for the automatic segmen-
tation of anatomical structures（multiple organs）in CT images,
based on a deep fully convolutional network. This approach
was applied to segment 19 types of targets in 3D CT cases,
demonstrating highly promising results. Our work is the first to
tackle anatomical segmentation（with a maximum of 19
targets）on scale-free CT scans（both 2D and 3D images）
through a single deep neural network. The proposed approach
could also be extended as a general solution for more complex
anatomical structure segmentation in other image modalities
that remain fundamental problems in medical physics（e.g.,
MR and PET imaging）.
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