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Abstract
Purpose Studies reported that themandibular cortical width
(MCW) measured on dental panoramic radiographs (DPRs)
was significantly correlated with bone mineral density. How-
ever,MCWis not a perfect index by itself, and studies suggest
the added utility of mandibular cortical index (MCI). In this
study, we propose a method for computerized estimation of
mandibular cortical degree (MCD), a new continuous mea-
sure of MCI, for osteoporotic risk assessment.
Methods The mandibular contour was automatically seg-
mented using an active contour model. The regions of
interest near mental foramen were extracted for MCW
and MCD determination. The MCW was measured on the
basis of residue-line detection results and pixel profiles.
Image features including texture features based on gray-level
co-occurrence matrices were determined. The MCD were
estimated using support vector regression (SVR). The SVR
was trained using previously collected 99 DPRs, including
26 osteoporotic cases, by a computed radiography system.
The proposed scheme was tested using 99 DPRs obtained by
a photon-counting system with data of bone mineral density
at distal forearm. The number of osteoporotic, osteopenic,
and control cases were 12, 18, and 69 cases, respectively.
The subjective MCD by a dental radiologist was employed
for training and evaluation.
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Results The correlation coefficients with the subjective
MCD were −0.549 for MCW alone, 0.609 for the MCD
by the features without MCW, and 0.617 for the MCD by
the features and MCW. The correlation coefficients with the
BMD were 0.619, −0.608, and −0.670, respectively. The
areas under the receiver operating characteristic curves for
detecting osteoporotic cases were 0.830, 0.884, and 0.901,
respectively,whereas those for detecting high-risk caseswere
0.835, 0.833, and 0.880, respectively.
Conclusions In conclusion, our scheme may have a poten-
tial to identify asymptomatic osteoporotic and osteopenic
patients through dental examinations.

Keywords Dental panoramic radiographs · Mandibular
cortex erosion · Mandibular cortical width · Osteoporosis ·
Textural features

Introduction

Osteoporosis is characterized by low bone mass and struc-
tural deterioration of the bone tissue and is regarded as a
major public health problem, especially in the aging world
population. It is estimated that 200 million or more women
are affected by the diseaseworldwide [1]. This asymptomatic
disease can lead unnoticeably to bone weakness and elevate
susceptibility to fractures of the hip, vertebra, and forearm.
There were an estimated nine million osteoporotic fractures
worldwide in 2000, which could be related to a cause of death
and certainly accounted for the disability of patients [2,3].
Early diagnosis and treatment can contribute to a reduction
of the number of severe fractures and medical costs.

Studies have reported an association between the mandi-
bular corticalwidth (MCW)ondental panoramic radiographs
(DPRs) andbonemineral density (BMD), suggesting the pos-
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sible screening of asymptomatic osteoporotic patients with
DPRs [4–6]. DPRs are used frequently throughout the world
for examining dental conditions.More than tenmillionDPRs
are obtained each year in dental clinics in the USA and Japan
[7,8]. However, dental practitioners are generally not review-
ing the extra-dental regions. Even if they are, it is extremely
rare that theMCW is quantitatively evaluated during a dental
practice.

To enable quantitative assessment and assist in the early
detection of osteoporosis, several research groups have
suggested automated or semiautomated methods for the
measurement of the MCW [9–12]. Arifin et al. [9] pro-
posed a semiautomated method, where regions of interests
(ROIs) below mental foramen identified by an examiner are
processed by a high-pass filter to identify the cortical mar-
gins. In that study, inner and outer cortical margins were
determined by gradient analysis with manual assistance.
In their recent study [10], after manual extraction of the
ROIs, the corticalmarginwas automatically segmented using
dynamic programming, and cases with low BMD and nor-
mal BMD were classified on the basis of MCW histogram
analysis using a support vector machine. An evaluation with
60 training and 40 test cases demonstrated the potential
usefulness of their method with sensitivities of 96% and
specificities of 86 and 84% for low BMD at the lumbar spine
and femoral neck, respectively. Allen et al. [11] and Roberts
et al. [12] proposed a computerized method to determine the
lower and upper cortical borders using active shape models
and subsequently active appearancemodels without andwith
manual annotation points. Although they encountered some
failure cases in the fully automatic mode, theMCWwas use-
ful in detecting cases with lowBMD at the femoral neck with
the sensitivity of 80% and the specificity of approximately
77% in 663 cases.

We have previously proposed a fully automaticmethod for
themeasurement of theMCWbased on amandibular contour
model fitting and profile analysis [13,14]. Using 100 cases,
the high sensitivity and specificity of 80.8 and 94.6%, respec-
tively, for identifying osteoporotic patients were obtained,
indicating the potential benefit of our system in a role of
supplemental screening. The system was implemented in a
teleradiology service and is in a trial operation. However,
the sensitivity is not a perfect with the MCW measurement
alone, even with the manual measurement.

On the other hand, Taguchi et al. [15] suggested that corti-
cal erosion characterized by endosteal residue or porousness
could be a sign indicative of osteoporotic risk; its condi-
tion can be classified into the three mandibular cortical index
(MCI) grades suggested byKlemetti et al. [16] In fact, several
groups have studied fractal analysis and morphologic analy-
sis on dental radiographs for evaluating the structural change
in alveolar and trabecular bones and detecting women with
low BMD [17–21]. Some of these studies found the useful-

ness of the analysis [17,20], whereas others found no strong
association [18,19,21]. One of the reasons for limited use-
fulness might be that the fractal dimension by itself cannot
fully describe coarseness of cortical bone.

More recently, Nakamoto et al. [22,23] proposed an auto-
mated method to determine cortical erosion on DPRs for
screening osteoporosis. In their studies, the ROIs around the
cortical bone were extracted, and the bright regions were
detected by morphological skeletonization. Based on the
detected line segments, images were classified into normal-
BMD and low-BMD groups. Roberts et al. [24] investigated
the texture features to capture the cortical holes and residues
for improving the computerized diagnosis of osteoporosis
on DPRs. They determined Haralick texture features and
used a random forest classifier to predict the probability
of osteoporosis. They demonstrated that the cortical texture
combinedwith the cortical width could be a strong biomarker
for osteoporosis at the femoral neck. Kavitha et al. [25] per-
formed a similar study and concluded that the combination
of texture features and the MCW can be a superior indica-
tor of osteoporosis. A conclusion of Robert et al. [24] was
that texture classifiers performmore effectively than theMCI
assigned by experts, probably owing to its subjective nature
and coarse categorization.

In this study, we investigate image features to charac-
terize the cortical condition and automatically quantify the
degree of mandibular cortical erosion. In our preliminary
investigation [26], we attempted to classify cases into three
MCI groups. Although the result with a leave-one-out cross-
validation confirmed a potential utility of our method, the
classificationofClass II caseswasdifficult partly owing to the
ambiguity of class definitions. Our aim is to not only detect
patients with osteoporotic risk but also provide quantitative
data that can be useful to dentists in recommending further
examinations for patients. For improving the classification
andquantification,we investigate the use of a continuous rate,
whichwe call themandibular cortical erosion degree (MCD),
rather than discrete classes, to potentially overcome coarse
categorization of MCI and to enhance the system training.

Materials and methods

DPR datasets

The first dataset was collected in our previous study and con-
sists of 99 DPRs [13]; one case was excluded because of its
atypical cortical morphology. The dataset includes 82 cases
obtained during routine dental examinations where 26 cases
have been diagnosed with osteoporosis by clinical evaluation
with dual-energy X-ray absorptiometry (DXA), and 17 cases
were normal volunteers. Thirty-five subjects were male and
59 were female with mean ages of 54 and 57, respectively.
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The age and/or gender information was missing in five cases.
The images were obtained with Veraview Epocs (J. Morita
MFG. Corp., Kyoto, Japan) and CR 75.0 (Agfa, Mortsel,
Belgium) at Asahi University Hospital, Gifu, Japan. They
were in Digital Imaging and Communications in Medicine
(DICOM) format with 1420 × 2920 pixels, 0.1-mm resolu-
tion, and 12-bit grayscale.

The second dataset was obtained with QRmaster-PTM
(Telesystems Co., Ltd., Osaka, Japan) at Asahi University
Hospital for evaluation of periodontal diseases. It includes
99 patients who have undergone DXA measurements of the
forearm with a simple equipment for research purposes. All
patients do not have the history of osteoporotic diagnosis or
known fractures. According to the World Health Organiza-
tion (WHO) criterion, patients with a T -score, calculated by
the measured BMD minus the young adult mean (YAM) of
the BMD divided by the young adult standard deviation (SD)
of the BMD, less than equal to −2.5 are considered osteo-
porotic, whereas those with a T -score between −2.5 and
−1.0 are considered osteopenic. Until 2012, the Japanese
Society for Bone and Mineral Research and Japan Osteo-
porosis Society recommended the criteria of less than 70
and 80% of YAM of the BMD at the corresponding sites
as osteoporosis and osteopenia, respectively. In 2012, they
announced the new criteria in accordance with WHO; the
cutoff values of 70% of YAM of the BMD and T -score of
−2.5 are comparable for lumber spines and femoral neck.
However, it is known that the young adult SD of distal
radius is very small, causing a substantial difference between
the two cutoff values. Therefore, it is recommended that
the conventional 70 and 80% criteria would be used for

the BMD of the distal radius; we followed this recommen-
dation to avoid overdiagnosis. Based on this criterion and
assuming that they do not have non-traumatic fractures,
the dataset consists of 12, 18, and 69 images of osteo-
porosis, osteopenia, and control cases, respectively. The
history of other diseases related to the secondary osteo-
porosis, medication status, smoking history and alcohol
consumption were not known. The mean ages of the 56
females and 43 males are 59 and 53, respectively. The
images were saved in bitmap format with 1573 × 3024
pixels, 0.1-mm resolution, and 8-bit grayscale. All proce-
dures performed in studies involving human participants
were in accordance with the ethical standards of the insti-
tutional research committee and with the 1964 Helsinki
Declaration and its later amendments or comparable ethi-
cal standards. For this type of study, formal consent is not
required.

The first dataset was used for training the system; the sec-
ond dataset was used for evaluation. The images from the
two datasets exhibit appreciable differences because of the
different imaging systems, i.e., computed radiography ver-
sus photon-counting system. This enables the evaluation of
the robustness of the proposed method. Figure 1 presents the
phantom images and the corresponding histograms obtained
with the two systems. They were imaged with routine auto-
matic exposure settings. A notable difference in appearance
can be observed. A dental radiologist graded the cortical
erosion on a continuous scale from normal cortex (0.0) to
severely eroded cortex (1.0) without other diagnostic infor-
mation, and this subjective MCD was used for the system
training and evaluation.

Fig. 1 Dental panoramic radiographs of a phantom obtained by different imaging systems and the corresponding pixel value histograms: (left) by
computed radiography system (1420 × 2920 pixels) and (right) by a photon-counting system (1573 × 3024 pixels)
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Fig. 2 Flowchart of the proposed method. The left side describes the previous method for the MCW measurement and the right side is the new
method added for MCD determination

Method overview

The flow of the proposed method is illustrated in Fig. 2. Our
computerized scheme beginswith the extraction of regions of
interests (ROIs) for the measurement of the MCW and deter-
mination of image features for cortical erosion. The lower
border of the mandible was automatically segmented using
Kirsch’s Canny edge detector [27] and an active contour
model. The details of the segmentation method are described
elsewhere [13]. For measurement of theMCW, three ROIs of
101× 100 pixels were obtained for each of the right and left
reference points. For feature analysis, one ROI of 151× 100
pixels around the reference point on each side was extracted.

When a cortex begins to erode, endosteal cortical residues
appear as horizontal lines along the cortical margin. To detect
these linear structures, the line convergence filter [28] was
applied to all of the ROIs. Based on the detected ridges,
the optimal position was selected for the measurement of
the MCW. The filter outputs in the image analysis ROIs
were used for determination of the image features charac-
terizing the cortical texture. The ROI was divided into three
regions, i.e., outer cortex region, marginal region, and inner
trabecular region based on the profiles, and ridge related fea-
tures were determined in the marginal region. Other features
included Haralick’s textural features based on the gray-level
co-occurrencematrix (GLCM) [29]. Although themost com-
mon texture feature used for osteoporosis evaluation is fractal
dimension, its descriptive power could be limited by itself.

To more thoroughly describe the texture, we employed and
tested 13 features based on GLCM, which are commonly
used to describe medical image texture. Upon removal of
the features with low utility, principal component analysis
(PCA) was applied, and the MCD was estimated by the sup-
port vector regression (SVR) [30].

ROI extraction

MCWmeasurements are often made below the right and left
mental foramen [31]. When a cortex is eroded, MCW mea-
surement can be influenced by the cortical residues. In some
cases, a shadow of hyoid bone is overlapped with the cortical
bone, causing the mismeasurement of the MCW. To reduce
the measurement errors, a set of 15 profiles, which is consid-
ered optimal for the measurement, was selected from the 101
candidate profiles in our previous study [14]. In this study,
to further refine the measurement, these 101 profiles were
obtained at six positions, corresponding to the three ROIs on
each side, and four out of the six average measurements were
employed by omitting the maximum and minimum MCWs
to exclude possible outliers.

For each point of interest on themandibular contour, a line
was fitted using 21 pixels along the contour, and 100 pixel
values were obtained along the line perpendicular to the fit-
ted line as indicated in Fig. 3b. This process was repeated
for the 101 or 151 points around the reference point for cre-
ating an ROI of 101 × 100 (for the MCW measurement) or
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Fig. 3 Obtaining a profile perpendicular to the line fitted to the
mandibular contour for extraction of regions of interest (ROIs). a A
dental panoramic radiograph with an automatic segmentation result of
mandibular contour, b enlarged view of the cortex with a fitted line

(pseudo tangential line) and its perpendicular line (profile) for a point
of interest, c an example of a profile and combined profiles for creating
an ROI, and d positions of the second and third ROIs for the MCW
measurement

151 × 100 (for feature analysis) pixels (Fig. 3c, d). Exam-
ples of the extracted ROIs for the MCW measurement and
feature analysis are presented in Figs. 4a, b and 5a, b, respec-
tively. The second and third ROIs for theMCWmeasurement
were extracted in a similar manner by obtaining the profiles
continuously in posterior to the first ROI as shown in Fig. 3c.

Ridge detection and profile selection for MCW
measurement [14]

As an osteoporotic risk marker, we defined the MCW as the
width of the dense cortex excluding the eroded margin area.
Therefore, we searched for a border of dense cortex between
the densest part, i.e., peak of the profile, and the cortical
residues, if present. Therefore, horizontal ridges correspond-
ing to the peak and possible residues were detected by the
line convergence filter as illustrated in Fig. 4c, d [28].When a
ridge is present, the gradients on the both sides are perpendic-
ularly converged to the ridge. The Prewitt filter was applied
to determine the directions of the gradients. The normalized
inner product was calculated by

ci, j,θ = �gi j · �pθ
∣
∣�gi, j

∣
∣ · | �pθ | (1)

where �g is the gradient vector and �p is the vector perpendic-
ular to the presumed ridge, �θ . The output becomes one if
the directions of these vectors are in concordance. The gra-
dient vectors were determined in support regions, Rw, with
a fixed length and a variable width above and below the pre-
sumed ridge. The convergence index at the point of interest
was determined by

c (x) = maxRw,θ

(
1

n

∑

i, j
ci, j,θ

)

(2)

where n is the number of pixels in Rw. For the MCW mea-
surement, the length of Rw was set to 11 pixels and the width
was varied from one to five pixels. Target ridges of −45 to
45 degrees with an increment of 15 degrees were considered.
The point of interest was determined as a part of a ridge if
the convergence index was above 0.5, which was set empiri-
cally; the output of a weak convergence below this threshold
was set to zero. After line thinning, ridges less than 15 pixels
were considered as “noise” and removed. The output image
contained the ridges corresponding to the cortical peak and
those corresponding to possible residues, as indicated by the
lines in Fig. 4c, d.
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Fig. 4 ROIs for the MCW
measurement: a, b right and left
ROIs, c, d output of the line
convergence filter, and e, f
selected cortex peak ridges
(yellow arrows), potential ridges
corresponding to cortical
residue (green dotted arrows),
and selected 15 profiles for the
MCW measurement (gray
areas)

In selecting a set of 15 profiles for MCW measurement,
three rules were applied. First, the ridge corresponding to
the densest part of the cortex (cortical peak) was present.
The lowermost ridge in each ROI was considered as the
cortical peak. Second, if the ridges corresponding to the cor-
tical residues were present, the profiles were selected from
these regions. In this study, any ridges detected within a
vertical distance of 20 pixels from the cortical peak were
determined as the residues. If no residues were present, all

regions meeting the first rule remained as candidates. Third,
the average contrast in 15 consecutive profiles was great-
est. Contrast is defined as the difference in pixel values of
the cortical peak and the minimum pixel value between
the peak and the residue, if it is present, or the pixel at
a distance of 20 pixels from the peak, if no residue is
present. The selected measurement region, corresponding to
the consecutive 15 profiles, is presented as the gray area in
Fig. 4e, f.
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Fig. 5 ROIs for feature
analysis: a, b right and left ROIs
and c, d output of line
convergence filter and division
into three regions of outer dense
cortex region (OCR), marginal
region (MR), and inner
trabecular region (ITR)

The MCW measurement procedure from a profile has
been described in detail elsewhere [13]. Briefly, the average
downslope in the search range was determined as

Gave =
{∑e

i=sai − ai+1

n
|ai > ai+1

}

(3)

where s is the peak of the profile, e is the end of the search
range, ai is the corresponding pixel value (the profile ampli-
tude), and n is the number of pixels satisfying ai > ai+1. If
the cortical residue was present in the measurement region,
the end of the search range was set at the residue ridge. Oth-
erwise, the end was set as s + 19 pixels. The pixel closest to
the peak that met ai − ai+1 ≥ Gave in the search range was
determined as the upper cortical edge.

ROI division and feature determination

The presence of horizontal ridges corresponding to the cor-
tical residues is an important feature. The line convergence
filter was also applied to the ROIs for feature analysis. For
detecting smaller ridges, the length and maximum width of
Rw were set to nine and three pixels, respectively. The other
parameters were not changed. Figure 5c, d shows examples
of the filter output.

To characterize cortical erosion, image features were
determined in the cortical margin area. First, each ROI was
separated into three regions: the outer “dense” cortex region
(OCR), cortex margin region (MR), and inner trabecular
bone region (ITR) as shown in Fig. 5c, d. The dense cor-
tex region was defined as the rectangular region between the

lower mandible border, i.e., lower end of the ROI, and the
horizontal line through the uppermost pixel of the cortical
peak ridge. The upper border of the cortex margin region
was determined using the profiles. Each profile, correspond-
ing to a column of an ROI, was approximated by a third
order polynomial function using a least squared fitting, and
the inflection point I was determined by,

I = − b

3a
(4)

f (x) = ax3 + bx2 + cx + d (5)

where a, b, c and d are the coefficients of the fitted curve
(see Fig. 6). In Fig. 6, the potential marginal region based on
this profile is indicated by the shaded area. The actual border
between the margin and inner trabecular bone regions was
set at the position of the average distance between the lower
mandible border and the inflection points in 101 profiles.
Figure 5 c, d illustrates these regions.

The features included the area ofMR(green area inFig. 5c,
d corresponding to potentially eroded region), number of the
ridge pixels in MR (number of white pixels in Fig. 5c, d
corresponding to potential residues), and ratio of the aver-
age pixel values of the ridge pixels in OCR and MR (means
of original pixel values of white pixels in Fig. 5c, d). The
textural features were determined based on eight GLCM cor-
responding to the four directions 0, 45, 90, and 135 degrees
with a distance of five pixels in MR and the combined
OCR and MR. For each matrix, 13 Haralick’s features were
determined, yielding 104 features. The features included con-
trast, angular second moment, correlation, inverse difference
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Fig. 6 Polynomial curve fitting
and determination of the
inflection point for region
division

moment, variance, difference entropy, difference variance,
sum entropy, sum variance, entropy, sum average, informa-
tion measure of correlation “1,” and information measure of
correlation “2,” which are defined elsewhere [29].

Feature reduction and MCD estimation

The total number of features including those described above
and the MCW was 108, which was excessively large. Fur-
ther, many of the textural features were expected to be highly
correlated. To reduce the number of features, the criteria
of individual utility and combinational redundancy were
considered. First, the correlation between each feature and
the subjective MCD was determined. The features with an
absolute value of correlation less than 0.3were removed from
further consideration. For the remainder, PCA was applied
to further reduce the feature dimension. Using the training
dataset, the optimal number of principal components (PCs)
was selected using a fivefold cross-validation test. TheMCD
was determined by SVR using the first n PCs. For evaluation
of utilities of the image features alone and the combination of
the image features andMCW,MCDwas also estimated using
the image features without MCW. The kernel function used
was the radial basis function with gamma of 0.0625, and the
cost and epsilon in loss function were 4.0 and 0.125, respec-
tively, which were selected using the five-fold grid search.
The parameters selected for MCD estimation without MCW
were 0.0039, 16.0, and 0.016, respectively. The results were
comparedwith the subjectiveMCD.The optimal nwas deter-
mined based on the mean squared error. The test cases were
projected to the PCA space spanned by the training cases,
and the first n PCs were used for MCD estimation by the
SVR model.

Evaluation

The MCD estimation accuracy was evaluated by a com-
parison with the subjective MCD provided by the dental
radiologist in terms of correlation. The estimated MCD was
also compared with the BMD values. Classification perfor-

mances of the osteoporotic and normal cases and of high
risk, i.e., osteoporosis and osteopenia, and low risk cases
were evaluatedby the receiver operating characteristic (ROC)
analysis.

Results

Using the training dataset, the utility of each feature was
evaluated by correlation with the subjectiveMCD. The infor-
mation measure of correlation “2” determined from the
GLCM of zero degrees in the combined regions had the
highest correlation of 0.789. Table 1 lists some of the fea-
tures that are expected to be useful for MCD estimation. It
can be observed that some of these features, including the
MCW, have a high correlation value by themselves. With a
threshold of 0.3, the number of features was reduced to 49.
PCA was applied to these features, and the number of PCs
used for MCD estimation using SVR was determined to be
eight based on the minimum least squared error.

Table 1 Correlation coefficient between the subjective MCD and each
feature (top 10) for training dataset

Feature (region for GLCM, degree) Correlation coefficient
(absolute value)

Information measure of correlation 2
(CR, 0)

0.789

Information measure of correlation 1
(CR, 0)

0.766

Area of marginal region 0.750

MCW 0.730

Difference entropy (CR, 0) 0.699

Contrast (CR, 0) 0.682

Number of ridge pixels in marginal
region

0.675

Difference variance (CR, 0) 0.672

Inverse difference moment (CR, 0) 0.659

Information measure of correlation 2
(CR, 135)

0.644

*CR: combined outer and marginal cortical region
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Fig. 7 Relationship between MCDs determined by the dental radiol-
ogist and proposed method

The test cases were projected onto an 8-dimensional PC
space spanned by the training dataset, and the MCDs were
estimated using SVR. The relationship between the MCDs
determinedby theproposedmethod and thedental radiologist
is shown in Fig. 7. Although MCD estimation was moder-
ately successful, as indicated by the correlation coefficient of
0.617, there remains room for improvement compared with
that for the training set of 0.841. When MCD was estimated
using the image features without MCW, the correlation coef-
ficient was 0.609. The correlation coefficient between the
MCW alone and subjective MCDwas −0.549. These results
indicate the effectiveness of combiningMCWand image fea-
tures. Figure 8 a, b show the relationships between the BMD

and MCD by the dental radiologist and between the BMD
and MCD by the proposed method, respectively. The corre-
lation coefficient of −0.670 is marginally higher than those
between the subjective MCD and BMD (−0.600), between
the estimated MCD without MCW and BMD (−0.608), and
between the MCW alone and BMD (0.619). These results
indicate the potential utility of the proposed MCD for osteo-
porotic risk assessment.

Figure 9a, b shows the ROC curves for the classification
of the osteoporotic and non-osteoporotic cases and of the
high-risk and low-risk cases, respectively. The areas under
the curves (AUCs) for detecting osteoporotic cases using the
MCD by the dental radiologist, the MCW alone, the MCD
without MCW, and the MCD by the proposed method are
0.874, 0.830, 0.884, and 0.901, respectively. The AUCs for
detecting the high-risk cases are 0.833, 0.835, 0.833, and
0.880, respectively. These are not statistically significantly
different, although the difference between theMCWonly and
the MCD by the proposed method for detecting osteoporotic
cases approached the statistical significant level (p = 0.06).
Note that for estimation of theMCD, theMCWmeasurement
result was used as a feature. Our intention is not to replace the
MCW by the MCD, rather to provide the MCD as additional
information for assessing the risk of osteoporosis. Figure 10
shows a conceptual diagram of the system output. An MCW
of 2.97mm is at the borderline between suspected osteoporo-
sis and normal. Inclusion of the high erosion degree suggests
that the patient has a high risk of osteoporosis.

Discussion

We have previously proposed an automated method for
measuring the MCW on DPRs for the early detection of

Fig. 8 Relationships a between BMD and MCD by the dental radiologist and b between BMD and MCD by the proposed method
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Fig. 9 ROC curves for classification of a osteoporotic and non-osteoporotic cases and b high-risk and low-risk cases

Fig. 10 Conceptual diagram of
the system output showing the
average MCW and estimated
MCD with a high-risk alert

osteoporosis [13,14]. The study demonstrated the potential
usefulness of the computerized measurement using leave-
one-out cross-validation with the training dataset. However,
the osteoporotic change appears not only as a decrease in
the MCW but also as porousness of the mandibular cortex.
Characterization of the cortex may improve the sensitivity of
osteoporosis detection and identification of individuals at a
high risk. In our recent study, we attempted to classify the
state of themandibular cortex into three classes ofMCI using
four features [26]. Although the classification accuracies for
theClass I andClass III caseswere highwith 94.6 and 94.1%,
respectively, the classification of Class II cases was difficult
partially owing to the absence of a clear separation between
the classes and a rather continual progressive change from
Class I to III.

In this study, to overcome such difficulties and validate the
utility with the independent cases, (1) the degree of cortex
erosion was trained with and quantified as a continuous value
instead of discrete classes and (2) the utility of theMCW and
MCD for detecting high-risk cases were evaluated with an
independent dataset with BMD data.

The cortex condition was graded in continuous degrees
by a dental radiologist and used for the MCD estimation
by an SVR. Having intermediate values as opposed to dis-
crete classes could be useful in longitudinal comparison. It
is expected that the training can be performed more effec-
tively because the textural change in the cortex is gradual.
To support this, SVM was trained with the categorized data
rather than the continuousMCD. The outputs were the classi-
fication category and the likelihood for each class. Using the
output likelihood of Class I (normal), the AUC for detect-
ing the high-risk group was 0.874 (vs. 0.880 for MCD;
p > 0.05). The AUCs for detecting the osteoporotic group
using the likelihood of Class I and Class III (osteoporotic)
were 0.859 (vs. 0.901 for MCD; p > 0.05) and 0.777 (p =
0.02), respectively. Therefore, the performance was slightly
improved using the continuous data, although the differences
were not statistically significant using the Class I likelihood
data.

DPR imaging conditions are not standardized. Therefore,
the imagequality varies considerably dependingon the dental
clinics and imaging equipment. Hence, it is preferable that
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the computerized system is robust to images with different
quality. In this study, we evaluated the proposed method with
a new database obtained using a different imaging system.
The correlation between the subjective and estimated MCDs
for the test dataset was not very high compared with that for
the training dataset; however, the moderate correlation with
the BMD and comparable AUCs to those for the MCD by
the dental radiologist indicate the potential usefulness of the
estimated MCD for the risk assessment.

This study has limitations. Although the proposedmethod
was evaluated with an independent database, these images
were obtained at the university hospital and do not include
images with the variety of image quality expected from com-
munity dental clinics. We are investigating a preprocessing
method to standardize DPRs. The proposed method must be
evaluated with a large and heterogeneous dataset with and
without such preprocessing techniques.

The gold standard for osteoporosis and osteopenia in this
study was based on the BMD at the distal forearm. These
BMD values may not be related to severe osteoporotic frac-
tures in the spine and hip. We assumed that all patients have
no non-traumatic fractures on the basis of self-reporting. The
presence of no asymptomatic fractures is unknown because
these patients visited the periodontal department for den-
tal examination and spine radiographs were not obtained.
The definitive diagnosis should be determined by presence
of fractures. Our goal in this study is to inform patients with
high risk and suggest them to receive detailed examinations
or a standard osteoporosis screening. For that purpose, BMD
measurement at forearm performed with a simple equipment
was employed as the gold standard in this study. However,
the proposed method should be tested with cases having the
BMD measured at the spine and hip bone and the status of
fractures.

In recent cross-sectional study, Zebaze et al. [32] com-
pared cortical and trabecular bone mass using CT of distal
forearm and measured cortical porosity using scanning elec-
tron microscopy of femur specimens. They suggested that
the most bone loss occurring at older ages is cortical
and the measurement of cortical porosity could improve
identification of individuals at risk of fractures. Therefore,
our proposed method of quantifying cortical erosion may
have potential in identifying those at high and low risk of
fractures.

It is known that the prevalence of osteoporosis is differ-
ent for men and women. The texture and characteristics of
mandibular bone might be different, and MCD could be esti-
mated better using separate models for men and women.
However, the training dataset includes one osteoporotic case
of man and the test dataset includes three osteopenic and one
osteoporotic cases of men, which makes the reliable analysis
difficult. The separate analysis will be considered when we
obtained a sufficient number of data in the future.

Conclusion

We investigated an automated scheme for supplemental risk
assessment of osteoporosis using DPRs. The experimen-
tal results show the effectiveness of the proposed cortex
feature analysis for quantification of cortex erosion. Use
of continuous degree can facilitate perceiving a gradual
change in the cortex and thereforemore effectively assess the
progression. The MCD can supplement the MCW in detect-
ing osteoporotic and osteopenic patients. The computerized
quantification of the MCW and MCD on DPRs has a poten-
tial utility for osteoporotic risk assessment through dental
examination with no extra cost.
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