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A B S T R A C T

Dental records play an important role in forensic identification. To this end, postmortem dental findings and
teeth conditions are recorded in a dental chart and compared with those of antemortem records. However, most
dentists are inexperienced at recording the dental chart for corpses, and it is a physically and mentally laborious
task, especially in large scale disasters. Our goal is to automate the dental filing process by using dental x-ray
images. In this study, we investigated the application of a deep convolutional neural network (DCNN) for
classifying tooth types on dental cone-beam computed tomography (CT) images. Regions of interest (ROIs)
including single teeth were extracted from CT slices. Fifty two CT volumes were randomly divided into 42
training and 10 test cases, and the ROIs obtained from the training cases were used for training the DCNN. For
examining the sampling effect, random sampling was performed 3 times, and training and testing were
repeated. We used the AlexNet network architecture provided in the Caffe framework, which consists of 5
convolution layers, 3 pooling layers, and 2 full connection layers. For reducing the overtraining effect, we
augmented the data by image rotation and intensity transformation. The test ROIs were classified into 7 tooth
types by the trained network. The average classification accuracy using the augmented training data by image
rotation and intensity transformation was 88.8%. Compared with the result without data augmentation, data
augmentation resulted in an approximately 5% improvement in classification accuracy. This indicates that the
further improvement can be expected by expanding the CT dataset. Unlike the conventional methods, the
proposed method is advantageous in obtaining high classification accuracy without the need for precise tooth
segmentation. The proposed tooth classification method can be useful in automatic filing of dental charts for
forensic identification.

1. Introduction

Dental records play an important role in forensic identification after
large-scale disasters [1–3]. Forensic dentistry is an important field
because dental information can be used for identifying a person even
when his/her body has been severely damaged; moreover, antemortem
(AM) x-ray images are easier to collect than DNA samples. For dental
identification, postmortem (PM) dental findings and teeth conditions
are recorded in a dental chart. However, most dentists are inexper-
ienced at recording the dental chart for corpses, and it can cause a
psychiatric burden. Such a psychiatric stress may also lead to incorrect
data recording and psychiatric disorders.

For overcoming these drawbacks, studies have proposed automa-
tically obtaining dental information from the dental x-ray images,

creating panoramic-like images from CT data for better image compar-
ison, and/or matching the AM and PM images [4–10]. Jain et al. [4]
investigated a computerized method for matching the AM and PM
dental images. Each tooth was first isolated from its neighbors and the
tooth contour was extracted on the basis of intensity. The correspond-
ing image was then searched for by matching the extracted contours
with rigid transformation. Among 38 AM/PM image pairs, 25 were
correctly matched while the genuine AM image was selected as the
second-best match in 5 of the remaining 13 cases. Zhou et al. [5]
proposed a 3-step method to retrieve matched images. Images were
first classified into bitewing, periapical, or panoramic images, and the
teeth on bitewing images were segmented using a top-hat filter and an
active contour method. The corresponding image was searched for by
matching the boundary shape.
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Lin et al. [8] proposed a method to classify teeth on bitewing
images. After tooth segmentation, the length and width ratio and crown
size were used as features to classify each tooth as a molar or premolar
by using a support vector machine. They achieved an overall classifica-
tion accuracy of 95% when using 47 images containing 369 teeth.
Hosntalab et al. [10] proposed a multi-stage technique for the
classification and numbering of teeth on multi-slice CT images. The 3
step process included the segmentation of tooth regions using a
variation level set, feature extraction of the wavelet-Fourier descriptor,
and classification of teeth into 4 groups using a supervised classifier.
Using this technique, they achieved high classification accuracies above
94% for 804 teeth from 30 CT cases [10].

In this study, as a component of automated dental chart filing
system, we investigated an automated method for classifying tooth
types on dental cone-beam CT images using a deep convolutional
neural network (DCNN). Since the success of Krizhevsky et al. [11] in
the ImageNet 2012 competition, DCNNs have shown their outstanding
ability in object recognition and natural image classification. The
application of DCNNs to medical images has been increasingly
investigated by many groups that have achieved certain degrees of
success [12–17]. However, a successful application procedure has not
yet been established, and to our knowledge DCNNs have only been
applied to dental image processing in one study. Wang et al. [18]
reported the comparison of dental radiography analysis algorithms for
the grand challenges held in IEEE international Symposium on
Biomedical Imaging 2015, in which Ronneberger et al. employed u-
shaped deep convolution neural network for segmentation of bitewing
radiographs for caries detection. In this preliminary study, we inves-
tigated the utility of a DCNN in classifying teeth into 7 types by using
rectangular regions of interest (ROIs), each of which enclosed a tooth
from an axial slice.

2. Material and methods

2.1. Image dataset

The images used in this study were obtained using two dental CT
units, namely Veraviewepocs 3D (J.Morita Mfg, Corp., Kyoto, Japan)
and Alphard VEGA (Asahi Roentgen Ind. Co., Ltd., Kyoto, Japan),
which were used to acquire images in 33 and 19 cases, respectively. The
images were obtained from Asahi University Hospital, Gifu, Japan. The
diameter of the field of view ranged from 51 to 200 mm, and the voxel
resolution ranged from 0.1 to 0.39 mm. The institutional review boards
of Gifu University and Asahi University approved the study protocol.

In general, medical CT images employ Hounsfield units for
representing the gray levels. However, in dental cone beam CT images,
gray levels are not standardized. Therefore, in this study, the window
level and window width were manually adjusted to have an appearance
similar to the model image, in which the dental region was clearly
visualized. The average window level was 701 ± 461 and the average
window width was 1338 ± 973 for 12-bit images. The gray level was
then reduced to 8 bits prior to DCNN training and testing. From the 52
cases, 5 cases each from the two imaging systems were randomly
selected and used as the evaluation dataset, and the remaining were
used as the training dataset. For examining a sampling effect, the test
dataset was sampled 3 times, and the training and testing were
repeated.

2.2. ROI extraction

For both the training and test cases, the smallest bounding box
enclosing each tooth was manually placed on the CT volume. From the
bounding box, all axial slices excluding the upper and lower 20% were
used as the training and test ROIs. As this was a preliminary
investigation, the ROIs affected by metal artifacts were not included
in this study. The number of ROIs obtained from a single tooth ranged

from 19 to 171, with an average of 45. The 7 tooth types included the
central incisors, lateral incisors, canines, first and second premolars,
and first and second molars. The third molars were excluded from this
study because of the small number of samples. Fig. 1 shows an example
of the dental chart with different tooth types. The total number of ROIs
extracted from the CT volumes was 6653, 6766. 7928, 5794, 3346,
2115, and 2657, respectively, for each of the abovementioned 7 tooth
types. For the test cases, all ROIs were used for evaluation. The number
of test ROIs for the 7 tooth types in each of the 3 samplings is listed in
Table 1. For training the DCNN, the number of samples was balanced
to the minimum number of ROIs in the 7 tooth types by random
sampling. The number of the training ROIs in the 3 samplings was
11354, 12572, and 12985. Fig. 2 shows the extracted sample ROIs.

2.3. Data augmentation

A small number of training cases can often leads to overtraining.
Because the number of training cases in our dataset was limited, the
training data were augmented by image manipulation [11,19], and the
results with and without data augmentation were compared. One
method that we investigated in this study was image rotation.
Another method was intensity transformation by gamma correction
defined as follow:
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where x and y are the input and output pixel values, respectively, and
Imax is the maximum pixel value, which is 255 for the input image. For
the image rotation, the ROIs were extracted by rotating the CT volume
from −10 to +10° in 5° steps along the x-y plane and replacing the
bounding box. This resulted in a sample size 5 times the original
sample size. For intensity transformation, γ values of 0.75 and 1.5 were
applied, thereby increasing the number of samples by a factor of 3. The
sample images are shown in Fig. 3.

Fig. 1. Dental chart and tooth types.
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2.4. Network architecture

In this study, we employed the AlexNet [11] architecture. The
AlexNet, which was proposed by Hinton et al., had won the first place
in the ImageNet Large Scale Visual Recognition Challenge 2012 [20],
with an exceptional recognition performance. The network can be used
from Caffe [21], which is the deep learning framework developed by
members mainly working at the Berkeley Vision and Learning Center.
The AlexNet architecture is shown in Fig. 4. Our input images were
grayscale images with 227×227 pixels, and the network consisted of 5
convolution and 3 max pooling layers. The filter size, the number of
filters, and stride for each layer are specified in Fig. 4. Each convolution
layer is followed by a rectified linear unit (ReLU). In the last layers, all
the units are fully connected to output probabilities for 7 classes using
the softmax function. In the actual training, the AlexNet employs
dropout [11], in which some unit activations in the fully connected
layers are randomly set to zero, so that these connection weights would
not be updated to prevent overfitting. As in the original model, we
employed a dropout rate of 50%. For increasing the learning speed, the
network uses minibatch updates, in which gradient decent computation
and updates are carried out for a group of samples. In this study, we set
the batch size as 100. The number of training epochs was set to 30, in
which one epoch corresponds to the training of all samples once. The
base learning rate was set to 0.01, and was decreased by factor of 10
after every 10 epochs. The momentum was 0.9 as in the original
network. The training time with 194775 ROIs was approximately 2.5 h
when using a GeForce GTX TITAN X GPU (NVIDIA Corporation).

3. Experimental results

A DCNN was employed to classify each ROI into 7 tooth types. We
compared the classification results using training dataset A without
data augmentation, dataset B with image rotation, dataset C with
intensity transformation, and dataset D with both image rotation and
intensity transformation. The number of training samples in these
datasets is listed in Table 2. The original hand-cropped ROIs had
different sizes. These images were resized to 256×256 pixels auto-
matically prior to being randomly cropped to 227×227 pixels as they
were input to Caffe. We compared the results for the four resizing
methods provided by DIGITS, which are (i) crop, (ii) squash, (iii) fill,
and (iv) half crop half fill. Fig. 5 shows the images resized using the
four methods.

The classification accuracies for the different datasets and resizing
methods are presented in Table 3. For all the resizing methods, the
classification accuracy improved on including the rotated and window-
adjusted samples in the training. Among the resizing methods, the fill
method provided the best classification accuracy with dataset D in random
sampling 3. However, it was not always the best method for other datasets,
and the differences among the different methods were negligible.

Table 4 shows the confusion matrix for the result of dataset D and
resizing method (iii) in sample set 3. The most number of misclassi-
fications occurred for neighboring teeth, i.e., a tooth type was mis-
classified as its neighboring tooth type. For example, the lateral incisors
were misclassified as central incisors and the first premolars as the
second premolars.

Table 1
Numbers of test ROIs for seven tooth types in 3 random samplings.

Central incisor Lateral incisor Canine 1st premolar 2nd premolar 1st molar 2nd molar

Set 1 1169 1148 1369 991 716 493 497
Set 2 1277 1235 1419 966 639 319 388
Set 3 1208 1254 1425 938 401 260 344

Fig. 2. Regions of interest including single tooth extracted from axial slices.

Fig. 3. Samples created by rotation and intensity transformation. (from left to right: original, 10° rotation, −10° rotation, high intensity (γ=1.5), and low intensity (γ=0.75) images).
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4. Discussion

Using the DCNN, most teeth could be correctly classified to one of
the 7 tooth types. One of the advantages of this method is that it does
not require the precise tooth segmentation as might be required for the
conventional feature-based classification. Because the convolution with
the pooling process is robust enough to withstand image shift, it is
possible to automatically recognize and classify tooth type from the
larger, whole dental regions.

Deep learning in general is considered to require a large number of
training samples. In this study, despite the limited number of cases, the

Fig. 4. An illustration of AlexNet architecture applied for dental images.

Table 2
Numbers of training ROIs by data augmentation.

Dataset A
(original)

Dataset B
(rotation)

Dataset C
(intensity
transformation)

Dataset D (rotation
and intensity
transformation)

Random
set 1

11354 56770 34062 170310

Random
set 2

12572 62860 37716 188580

Random
set 3

12985 64925 38955 194775

Fig. 5. Images created by different resizing methods. (From left to right: original image, images by crop, squash, fill, and half crop half fill methods).

Table 3
Classification accuracies (%) for with and without data augmentation datasets and
different resizing methods.

Random set (i) Crop (ii) Squash (iii) Fill (iv) Half crop half
fill

Dataset A 1 78.5 82.0 79.9 80.7
2 81.3 84.1 82.9 83.7
3 78.3 84.4 81.9 82.5
Average 79.4 83.5 81.6 82.3

Dataset B 1 79.3 84.0 82.5 82.9
2 85.0 87.4 86.9 87.1
3 82.3 86.6 85.2 84.8
Average 82.2 86.0 84.9 84.9

Dataset C 1 80.7 85.6 84.2 83.6
2 84.1 87.8 87.4 88.3
3 85.7 89.1 89.1 85.2
Average 83.5 87.5 86.9 85.7

Dataset D 1 82.3 86.0 86.8 85.5
2 86.5 89.1 88.7 89.6
3 86.9 90.5 91.0 90.2
Average 85.2 88.5 88.8 88.4
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classification accuracy was relatively high (above 80%) even without
data augmentation. By increasing the number of samples by using
rotation and intensity transformation, the classification performance
was further improved. One of the characteristics of dental cone-beam
CT images is the variation in image quality. Therefore, including
samples with different contrasts was effective in improving the overall
classification performance. For the same type of teeth, individual
variations in growth directions and spatial relationships with neighbor-
ing teeth are large. Including the rotated image samples was, therefore,
expected to contribute to increasing the classification accuracy.

Among the four resizing methods, the fill method (iii) provided the
best accuracy for dataset D; however, for the other datasets, the squash
method (ii) provided the best accuracy. The slight differences in
accuracies indicate that the effect of the resizing methods is small,
and that the DCNN is robust enough to withstand small image
distortion.

In this study, we classified teeth into 7 types for possible application
in automated filing of dental charts. In contrast, Hosntalab et al. [10]
classified teeth into 4 types by first segmenting each tooth with manual
correction, if needed, and applying a 3-layered neural network using
wavelet-Fourier features. They obtained a classification accuracy of
above 94%. We tested our DCNN for the 4-class classification by using
dataset D with the fill method and obtained a classification accuracy of
94.4%. Although the result cannot be directly compared, we infer that a
similar classification accuracy can be achieved using the DCNN without
the need for precise tooth segmentation.

Wang et al. [18] compared computer algorithms for 2 challenges on
dental radiography analysis. One was to identify anatomical landmarks
on lateral cephalograms and to classify anatomical types based on the
landmarks for diagnosis and orthodontic treatment. The second
challenge was to segment seven tooth structures on bitewing radio-
graphs. For the tooth segmentation, Ronneberger et al. employed a U-
shaped deep convolutional neural network which includes layers of
contracting (downsampling) convolution followed by layers of decon-
volution (upsampling). Lee el al. employed a random forest to first
predict the probabilities of tooth structure classes for each pixel, and
post-processing to output final classes. Although the purpose and
image modality are different from those in the current study, such
techniques can be used for tooth segmentation and classification for
forensic identification purposes.

One of the limitations of this study was the small amount of
evaluation data. Another was that the slice images were evaluated
independently. Cross-sectional tooth images at certain levels are likely
more difficult to classify than those at other levels, such as the ones at
the crown and root levels. We expect that the classification accuracy
can be improved by combining the results for a tooth, or by applying
3D convolution. Therefore, we plan on investigating the effect of 3D
training when additional cases are obtained in the future.

In this preliminary investigation, we excluded the ROIs affected by
metal artifacts. We expect that the classification of tooth types for such
images would be difficult even if these cases were included in the
training samples. An effective preprocessing method for decreasing the
effect of metal artifact is needed for such cases.

5. Conclusion

We have investigated the utility of the DCNN for classifying of tooth
types on dental cone-beam CT. By increasing the number of training
samples by rotation and intensity transformation, the classification
performance was improved and a high accuracy of 91.0% was achieved.
The 7-tooth-type classification result can be effectively used for
automatic preparation of dental charts, which may be useful in forensic
identification.
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