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ABSTRACT 

We have proposed an end-to-end learning approach that trained a deep convolutional neural network (CNN) for 
automatic CT image segmentation, which accomplished a voxel-wised multiple classification to directly map each voxel 
on 3D CT images to an anatomical label automatically. The novelties of our proposed method were (1) transforming the 
anatomical structures segmentation on 3D CT images into a majority voting of the results of 2D semantic image 
segmentation on a number of 2D-slices from different image orientations, and (2) using “convolution” and “de-
convolution” networks to achieve the conventional “coarse recognition” and “fine extraction” functions which were 
integrated into a compact all-in-one deep CNN for CT image segmentation. The advantage comparing to previous works 
was its capability to accomplish real-time image segmentations on 2D slices of arbitrary CT-scan-range (e.g. body, chest, 
abdomen) and produced correspondingly-sized output. In this paper, we propose an improvement of our proposed 
approach by adding an organ localization module to limit CT image range for training and testing deep CNNs. A 
database consisting of 240 3D CT scans and a human annotated ground truth was used for training (228 cases) and 
testing (the remaining 12 cases). We applied the improved method to segment pancreas and left kidney regions, 
respectively. The preliminary results showed that the accuracies of the segmentation results were improved significantly 
(pancreas was 34% and kidney was 8% increased in Jaccard index from our previous results). The effectiveness and 
usefulness of proposed improvement for CT image segmentations were confirmed.  
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1. INTRODUCTION 
Fully automatic image segmentation is a fundamental step for understanding anatomical structures on 3D CT scans  by 

converting a physical image signal to useful abstractions [1]. Conventional approaches for CT image segmentation are 
usually constituted by transferring the human consideration and experience directly to a computer-based processing 
pipeline including a number of hand-crafted image processing algorithms and image features [2]. Although many 
mathematic models have been introduced recently for supporting image segmentation to reflect more human knowledge 
and learn the parameters from real images instead of human experience [3], it still attempts to emulate limited human’s 
rules or operations that are insufficient for computer-based image segmentation [4-10]. In order to further improve the 
accuracy and robustness of the automatic CT image segmentation, we have to handle a large variance of ambiguous 
image appearances, shapes, and relations of anatomical structures. It is difficult to achieve this goal by explicitly defining 
and considering human experience and rules. Data-driven approaches, such as deep convolutional neural networks 

Medical Imaging 2017: Image Processing, edited by Martin A. Styner, Elsa D. Angelini, Proc. of SPIE 
Vol. 10133, 1013324 · © 2017 SPIE · CCC code: 1605-7422/17/$18 · doi: 10.1117/12.2254201

Proc. of SPIE Vol. 10133  1013324-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/25/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 
 

 
 

(CNNs), provide a new way to solve this problem by automatically learning image features and model parameters from a 
large dataset with a simple and unified layer structure.  

Recently, several research works were reported to apply deep CNNs to medical image analysis. Many of them use the 
deep CNNs to lesion detection or classifications. Shin et al. evaluated different structures of deep CNNs for thoraco-
abdominal lymph node detection and interstitial lung disease classification [11]. Ciompi et al. used deep CNNs to detect 
pulmonary peri-fissural nodules on CT images [12]. These works usually divide CT images into a number of small 
2D/3D patches at different locations and classify these patches into a number of pre-defined categories. The deep CNNs 
are used to learn a set of optimized image features (sometimes combined with a classifier) to achieve the best 
classification rate for the image patches. Similarly, deep CNNs were also embedded into conventional image analysis 
pipelines such as lesion classification [13], lesion detection [14] and image segmentation processes to reduce the false 
positives in the results or predict the likelihoods of image patches [15-17]. However, anatomical segmentations on CT 
images over a wide range of human body is still challenging due to the similar image appearance between small image 
patches and difficulty to ensure global spatial consistency of patches on different CT cases.  

In our previous work [18, 19], we have proposed an approach that naturally imitates brain mechanism of CT image 
interpretation by radiologists for image segmentation based on deep CNNs. This approach modeled the CT image 
segmentation as “multiple 2D proposals with a 3D integration” just like the radiologist to interpret a CT scan on many 
2D slices and reconstruct 3D anatomical structures in the brain. The method used in this approach was a fully 
convolutional network without using any conventional image processing algorithms such as smoothing and filtering, and 
did not require any other pre- or post-processing. In addition, the proposed approach used one simple network to segment 
multiple organs simultaneously, adaptive to 3D or 2D images of arbitrary CT-scan-range (e.g. body, chest, abdomen) 
with a high computational efficiency by using parallel computations on GPU. Although, our previous works showed 
possibility of a deep CNN to segment multiple organs simultaneously on 3D CT images (the lasted result of our previous 
method has been submitted in [20]), there is still a room for improvement on the segmentation accuracy especially for 
some special organ types such as pancreas on CT images. 

In this paper, we propose an improvement for our previous method that initially reported in [18, 19] by restricting the 
range of inputted image based on organ localizations [21]. We also compare the performance of our deep CNNs [19] 
before and after improvements by using the same CT dataset. In following sections, we firstly introduce the basic idea of 
our previous method that is initially reported in [18, 19], and then describe our improvement by adding the information 
of bounding box for a target organ for both training and testing. Finally, we show the experimental results for 
segmenting two kinds of organ types (pancreas and left kidney) with a conclusion.     

2. METHODS 
2.1 Outline 

The process flow of the proposed scheme is shown in Fig.1. The input is a 3D CT case (it can also handle a 2D case 
by treating it as a special 3D case with only one slice) and the output is an annotated image of the same size and 
dimension on which a pre-defined anatomical label is associated to each pixel respectively. Our method firstly passed the 
CT image to an organ localization module to output multiple organ locations (a number of bounding boxes), and then 
accomplish the segmentation task by deciding the target organ regions within the bounding boxes. Both localization 
process and segmentation process are based on our idea, which conclude three steps: (1) sampling 2D sections on a 3D 
CT case from multiple directions, (2) detecting the organ location or segmenting organ regions on each 2D section 
individually, and (3) stacking the 2D results back to 3D with redundancy.  Both localization and segmentation methods 
were based on our previous works [18-20], which use machine-learning approaches.      

2.2   Organ localization [21] 

The organ localization module includes two major processing steps: (1) individual organ localization that decides the 
bounding box of a target organ based on window sliding and pattern matching in Haar-like and LBP feature spaces; (2) 
group-wise calibration and correction based on general Hough voting of multiple organ locations [21]. The first step 
focuses on identifying local texture similarity of a target organ and output likelihood values of the target organ location 
on each pixel of CT images. The second step emphasizes the validation of the spatial relationships of the detected 
multiple organ locations constrained by human anatomy. The final locations of organs on CT images are determined by 
balancing the local texture similarity (likelihood value) and global spatial relationship of the multiple organ locations 
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(prior probability validated by anatomical knowledge) obtained in Step 1 and 2, respectively. Details of our organ 
localization method can be referred in [21, 22]. 

2.3 Organ segmentations [18-20] 

The core part of our segmentation method is a deep CNN [19-20] that is used for the anatomical segmentation of 2D 
sections. This deep CNN is trained based on a set of CT cases with human annotations (label map) as ground truth. For 
the training images, all the 2D CT sections, together with their label maps, along the three body orientations are shuffled, 
and used to train a 2D deep CNN [22]. The training process repeats the feed-forward computation and back-propagation 
to minimize the loss function, which is defined as the sum of the pixel-wise losses between the network prediction and 
the label map annotated by the human experts. The gradients of the loss are propagated from the end to the start of the 
network, and the method for stochastic optimization is used to refine the parameters of each layer. In CT image 
segmentation, the trained CNN is applied to each 2D section independently, and each pixel is labeled automatically. The 
labels from each 2D section are then projected back to the original 3D locations for the final vote-based labeling [18-20].  

For segmentation of an unseen CT case, the density resolution (CT number) of the CT images is first reduced from 
12 to 8 bits by using linear interpolation and target organ region is cropped based on bounding box that is detected by 
localization module. The trained deep CNN is then applied to each 2D section within bounding box independently, and 
each pixel is labeled automatically. The labels from each 2D section are then projected back to its original 3D location 
for the final vote-based labeling, as described above. 

3. EXPERIMENT AND RESULTS 
A CT image database that was produced and shared by a Japanese research project entitled “Computational Anatomy” 

[23] was used in this experiment. This database includes 640 3D volumetric CT scans from 200 patients at Tokushima 

 
 

 
Fig.1. Process flow of our approach for an organ segmentation on a 3D CT case. 
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University Hospital. The anatomical ground truth (a maximum of 19 labels that include Heart, right/left Lung, Aorta, 
Esophagus, Liver, Gallbladder, Stomach and Duodenum (lumen and contents), Spleen, left/right Kidney, Inferior Vein 
Cava, region of Portal Vein, Splenic Vein, and Superior Mesenteric Vein, Pancreas, Uterus, Prostate, and Bladder) in 
240 CT scans was also provided in the database [24]. Our experimental study used all of the 240 ground-truth CT scans, 
comprising 89 torsos, 17 chests, 114 abdomens, and 20 abdomen-with-pelvis scans.  

We directly used the organ localization module that was generated based on another CT image dataset in our 
previous work [21] without any fine-tuning to adapt to above CT image database. We re-trained the segmentation 
module that was constructed by deep CNNs [18-20] based on the regions of interest (ROIs) on CT images indicated by 
bounding boxes of the target organs.  Our deep CNNs were implemented by using Caffe package [26]. Twelve CT scans 
were picked at random as the test samples, and the remaining 228 CT scans were used for training the deep CNN. As 
previously mentioned, we took 2D sections along the axial, sagittal, and coronal body directions. We trained two deep 
CNNs based on the ground-truth labels of the pancreas and left kidney regions, respectively. A method for stochastic 
optimization (ADAM) [25] was used for the optimization. All the 2D images were used directly as the inputs for CNN 
training, without any patch sampling.  

We tested the proposed scheme (Fig. 1) using 12 CT cases that were not used in the training stage. Two examples of 
the segmentation results for pancreases and left kidney on a CT case were shown in Fig. 2 and 3. We measured the 
intersection over union (IU) (also known as the Jaccard index) between the segmentation result and the ground truth, and 
voxel accuracy that shows true positive rate of the voxel-wised prediction. The evaluation results for the voxel accuracy 
and IU were 99 % and 88 % for left kidney, 84 % and 65 % for pancreas, when averaged over all the segmentation 
results of the test data. That means 99 % of the voxels within the left kidney (84% within pancreas) were labelled 
correctly, with a region-coincidence (3D Jaccard index) of 88 % (65% of pancreas) to human annotations for the test data. 

4. DISCUSSION AND CONCLUSION 
We confirmed that the left kidney and pancreas were localized and segmented correctly in all test CT images. Our 

segmentation targets cover a wide range of shapes, volumes, and sizes, either with or without contrast enhancement, and 
at different locations in the human body. These experimental results showed the potential of our approach to recognize 
those organs that may appear in CT images. The IUs of the target organs (left kidney: 88 %, pancreas: 65 %) were 
comparable to the accuracies reported from the previous state-of-the-art methods. Comparing to our previous method 
(left kidney: 80 %, pancreas: 31 %), the IUs for segmenting left kidney and pancreas were 8 % and 34 % higher.  From 
this result, we see that accuracy of the organ segmentation based on deep CNNs can be improved significantly by only 
focusing an ROI (bounding box of the target) instead of the whole image region on CT images.  

The performance of the deep CNNs for multiple organ segmentations based on an end-to-end deep learning has been 
confirmed in our previous works [18-20]. However, for some organ types (e.g., pancreases, gallbladder, portal vein, 
splenic vein, and superior mesenteric vein), our previous method could not show particularly high IUs [18,19]. This 
experimental result demonstrated a solution by restricting the inputted image range for training and testing deep CNNs 

 
Fig.2. Example of pancreas segmentation on a CT scan by using the proposed method. Three typical slices of a 3D CT 

scan and a 3D view of pancreas region (green color) are shown from left to right. Human annotation and 
segmentation result are shown in upper and bottom, respectively.  

Proc. of SPIE Vol. 10133  1013324-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/25/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 
 

 
 

that can improve the accuracy of segmenting those organ types. We found the organ localization technique on CT images 
established in our previous work [21, 27] is still useful as a pre-processing to improve the performance of deep CNN 
based image segmentation.  

In conclusion, an improvement of a deep-learning approach for CT image segmentation was proposed. We applied our 
method to segmenting two types of organs based on a dataset of 240 3D CT cases with different scan ranges and 
protocols. The segmentation results demonstrated a significant improvement in accuracies than these of our previous 
works. The proposed method can be applied to improve accuracy of the other anatomical structure segmentations in the 
future. 
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